Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton
{"title":"乙酰-CoA羧化酶阻碍 CD8+ T 细胞在肿瘤微环境中利用脂质","authors":"Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton","doi":"10.1016/j.cmet.2024.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetyl-CoA carboxylase obstructs CD8<sup>+</sup> T cell lipid utilization in the tumor microenvironment.\",\"authors\":\"Elizabeth G Hunt, Katie E Hurst, Brian P Riesenberg, Andrew S Kennedy, Evelyn J Gandy, Alex M Andrews, Coral Del Mar Alicea Pauneto, Lauren E Ball, Emily D Wallace, Peng Gao, Jeremy Meier, John J Serody, Michael F Coleman, Jessica E Thaxton\",\"doi\":\"10.1016/j.cmet.2024.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.</p>\",\"PeriodicalId\":93927,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.02.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.02.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
实体瘤微环境(TME)会使肿瘤浸润 T 细胞(TILs)的代谢状态受损,其特点是无法维持有效的能量合成以发挥抗肿瘤功能并维持存活。TME中的T细胞必须通过线粒体脂肪酸氧化(FAO)分解脂质,以在营养压力下提供能量,而且已经证实富含FAO的T细胞善于控制癌症。然而,内源性 TIL 和未经修饰的细胞治疗产品无法维持肿瘤中的生物能。我们发现,固态 TME 强加了乙酰辅酶 A(CoA)羧化酶(ACC)的永久活性,导致 TIL 中的脂质生物生成和储存与 FAO 相反。利用代谢、脂质组学和共聚焦成像策略,我们发现限制乙酰辅酶A重新改写了T细胞的新陈代谢,从而在TME压力下维持能量。限制胆碱酯酶的活性会增强表明 T 细胞长寿的基因和表型程序,使 T 细胞具有更高的存活率和多功能性,从而维持对癌症的控制。
Acetyl-CoA carboxylase obstructs CD8+ T cell lipid utilization in the tumor microenvironment.
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.