新型磁性螺旋游泳器的设计与分析

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-03-16 DOI:10.1016/j.jfluidstructs.2024.104093
Pouria Piranfar, Mahyar Naraghi, Ali Kamali Egoli
{"title":"新型磁性螺旋游泳器的设计与分析","authors":"Pouria Piranfar,&nbsp;Mahyar Naraghi,&nbsp;Ali Kamali Egoli","doi":"10.1016/j.jfluidstructs.2024.104093","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic helical swimmers are one type of robots that swim at low Reynolds number environments by rotating around the helix axis. Considering the importance and dramatic increase in the use of robots and microrobots in the near future, optimizing and increasing their efficiency is very important and noteworthy. Propulsion force and translational velocity are among the most important features of the magnetic helical swimmer, which improves the function of the swimmer as each of them increases. In this paper, a new design has been proposed for the magnetic helical swimmer by changing the geometry of the tail region, which has increased the propulsion force and improved its translational velocity. A suitable experimental setup has been designed and built in accordance with the required experiments to evaluate the translational velocity of the proposed swimmer. Using the experimental results, two models have been presented to express the translational velocity and propulsion force of the swimmer in terms of its angular velocity. The results of the experiments show that the propulsion force of the built swimmer is 698.89 % higher than that of the common magnetic helical swimmer with similar dimensions and the same environmental conditions in Newtonian fluid. At the end of the experiments, the motion of the proposed swimmer is simulated in the COMSOL software, and the results of the experiments are used to validate the simulation results. Finally, the effect of parameters such as the helix pitch and the number of turns of the helix on the translational velocity of the swimmer is investigated using the computer simulations.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a novel magnetic helical swimmer\",\"authors\":\"Pouria Piranfar,&nbsp;Mahyar Naraghi,&nbsp;Ali Kamali Egoli\",\"doi\":\"10.1016/j.jfluidstructs.2024.104093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetic helical swimmers are one type of robots that swim at low Reynolds number environments by rotating around the helix axis. Considering the importance and dramatic increase in the use of robots and microrobots in the near future, optimizing and increasing their efficiency is very important and noteworthy. Propulsion force and translational velocity are among the most important features of the magnetic helical swimmer, which improves the function of the swimmer as each of them increases. In this paper, a new design has been proposed for the magnetic helical swimmer by changing the geometry of the tail region, which has increased the propulsion force and improved its translational velocity. A suitable experimental setup has been designed and built in accordance with the required experiments to evaluate the translational velocity of the proposed swimmer. Using the experimental results, two models have been presented to express the translational velocity and propulsion force of the swimmer in terms of its angular velocity. The results of the experiments show that the propulsion force of the built swimmer is 698.89 % higher than that of the common magnetic helical swimmer with similar dimensions and the same environmental conditions in Newtonian fluid. At the end of the experiments, the motion of the proposed swimmer is simulated in the COMSOL software, and the results of the experiments are used to validate the simulation results. Finally, the effect of parameters such as the helix pitch and the number of turns of the helix on the translational velocity of the swimmer is investigated using the computer simulations.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000288\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000288","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

磁性螺旋游泳器是一种通过围绕螺旋轴旋转在低雷诺数环境中游泳的机器人。考虑到在不久的将来机器人和微型机器人的重要性和使用的急剧增加,优化和提高它们的效率是非常重要和值得注意的。推进力和平移速度是磁螺旋游动器最重要的特征之一,随着这两个特征的增加,游动器的功能也会得到改善。本文通过改变尾部区域的几何形状,提出了一种新的磁螺旋游动器设计方案,从而提高了推进力和平移速度。根据所需的实验,设计并建立了一个合适的实验装置,以评估所提出的游泳器的平移速度。利用实验结果,提出了两个模型,用角速度来表示游泳器的平移速度和推进力。实验结果表明,在牛顿流体中,与尺寸相似、环境条件相同的普通磁性螺旋游泳器相比,所造游泳器的推进力高出 698.89 %。实验结束后,在 COMSOL 软件中模拟了拟议泳器的运动,并用实验结果验证了模拟结果。最后,利用计算机模拟研究了螺旋间距和螺旋圈数等参数对游泳器平移速度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and analysis of a novel magnetic helical swimmer

Magnetic helical swimmers are one type of robots that swim at low Reynolds number environments by rotating around the helix axis. Considering the importance and dramatic increase in the use of robots and microrobots in the near future, optimizing and increasing their efficiency is very important and noteworthy. Propulsion force and translational velocity are among the most important features of the magnetic helical swimmer, which improves the function of the swimmer as each of them increases. In this paper, a new design has been proposed for the magnetic helical swimmer by changing the geometry of the tail region, which has increased the propulsion force and improved its translational velocity. A suitable experimental setup has been designed and built in accordance with the required experiments to evaluate the translational velocity of the proposed swimmer. Using the experimental results, two models have been presented to express the translational velocity and propulsion force of the swimmer in terms of its angular velocity. The results of the experiments show that the propulsion force of the built swimmer is 698.89 % higher than that of the common magnetic helical swimmer with similar dimensions and the same environmental conditions in Newtonian fluid. At the end of the experiments, the motion of the proposed swimmer is simulated in the COMSOL software, and the results of the experiments are used to validate the simulation results. Finally, the effect of parameters such as the helix pitch and the number of turns of the helix on the translational velocity of the swimmer is investigated using the computer simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1