并入光伏微型电网:解决撒哈拉以南非洲电力危机的灵丹妙药

Agbo Onyilokwu Cyril , Chika O. Ujah , Benjamin Nnamdi Ekwueme , Christian O. Asadu
{"title":"并入光伏微型电网:解决撒哈拉以南非洲电力危机的灵丹妙药","authors":"Agbo Onyilokwu Cyril ,&nbsp;Chika O. Ujah ,&nbsp;Benjamin Nnamdi Ekwueme ,&nbsp;Christian O. Asadu","doi":"10.1016/j.uncres.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>The electrification rate in sub-Saharan Africa, standing at 45% in 2018, is significantly lower when compared with global benchmarks. The 600 million individuals lacking access to electricity constitute over two-thirds of the worldwide aggregate of the population lacking electricity. Limitations of power grids have placed a disproportionate burden of the lack of energy access on rural populations. The cheapest approach to achieving universal electricity access in numerous regions seems to be rooted in renewable energy. The diminishing cost of small-scale solar photovoltaic technology for solar home systems and mini-grids is expected to play a pivotal role in facilitating the provision of affordable electric power to millions. This study aims to elucidate the techno-economic benefits of augmenting photovoltaic mini-grids with the overarching goal of advocating for the adoption of photovoltaic mini-grid solutions in rural electrification in Sub-Saharan Africa. Prior research endeavors on rural electrification and photovoltaic mini-grids were meticulously curated and examined, with some attention also given to assessing the feasibility of grid integration. The findings showed that grid extension is the most cost-effective means of electricity delivery within a limited proximity, contingent upon topographical considerations. However, beyond this limited zone, mini-grids have proven to be more apt for providing affordable electricity to clustered customer populations. But mini-grids are not without challenges. High initial cost of installation, intermittency of energy source, energy storage problems, grid integration challenges, are some of the identified problems of photovoltaic mini-grids. The way forward must begin with the mitigation of these challenges. Some of the highlighted solutions include implementation of advanced energy storage systems, the formulation of renewable energy policies geared towards enhancing affordability in rural settings, integration with smart grid technologies, and adherence to grid codes to ensure compliance.</p></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"4 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666519024000074/pdfft?md5=bbc020509f136212860c1b7b81863b51&pid=1-s2.0-S2666519024000074-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic mini-grid incorporation: The panacea for electricity crisis in sub-Saharan Africa\",\"authors\":\"Agbo Onyilokwu Cyril ,&nbsp;Chika O. Ujah ,&nbsp;Benjamin Nnamdi Ekwueme ,&nbsp;Christian O. Asadu\",\"doi\":\"10.1016/j.uncres.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrification rate in sub-Saharan Africa, standing at 45% in 2018, is significantly lower when compared with global benchmarks. The 600 million individuals lacking access to electricity constitute over two-thirds of the worldwide aggregate of the population lacking electricity. Limitations of power grids have placed a disproportionate burden of the lack of energy access on rural populations. The cheapest approach to achieving universal electricity access in numerous regions seems to be rooted in renewable energy. The diminishing cost of small-scale solar photovoltaic technology for solar home systems and mini-grids is expected to play a pivotal role in facilitating the provision of affordable electric power to millions. This study aims to elucidate the techno-economic benefits of augmenting photovoltaic mini-grids with the overarching goal of advocating for the adoption of photovoltaic mini-grid solutions in rural electrification in Sub-Saharan Africa. Prior research endeavors on rural electrification and photovoltaic mini-grids were meticulously curated and examined, with some attention also given to assessing the feasibility of grid integration. The findings showed that grid extension is the most cost-effective means of electricity delivery within a limited proximity, contingent upon topographical considerations. However, beyond this limited zone, mini-grids have proven to be more apt for providing affordable electricity to clustered customer populations. But mini-grids are not without challenges. High initial cost of installation, intermittency of energy source, energy storage problems, grid integration challenges, are some of the identified problems of photovoltaic mini-grids. The way forward must begin with the mitigation of these challenges. Some of the highlighted solutions include implementation of advanced energy storage systems, the formulation of renewable energy policies geared towards enhancing affordability in rural settings, integration with smart grid technologies, and adherence to grid codes to ensure compliance.</p></div>\",\"PeriodicalId\":101263,\"journal\":{\"name\":\"Unconventional Resources\",\"volume\":\"4 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666519024000074/pdfft?md5=bbc020509f136212860c1b7b81863b51&pid=1-s2.0-S2666519024000074-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unconventional Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666519024000074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519024000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2018 年,撒哈拉以南非洲的电气化率为 45%,与全球基准相比明显偏低。6 亿缺电人口占全球缺电人口总数的三分之二以上。电网的局限性使农村人口承受了过重的能源匮乏负担。在许多地区,实现普遍用电的最廉价方法似乎植根于可再生能源。用于家用太阳能系统和微型电网的小型太阳能光伏技术成本不断降低,有望在促进向数百万人提供负担得起的电力方面发挥关键作用。本研究旨在阐明增强光伏微型电网的技术经济效益,其总体目标是倡导在撒哈拉以南非洲农村电气化中采用光伏微型电网解决方案。对以前关于农村电气化和光伏微型电网的研究工作进行了细致的整理和审查,同时也对评估并网可行性给予了一定的关注。研究结果表明,根据地形因素,在有限的范围内,电网延伸是最具成本效益的供电方式。然而,事实证明,在这一有限区域之外,小型电网更适合为聚集在一起的客户群提供负担得起的电力。但是,微型电网并非没有挑战。高昂的初始安装成本、能源的间歇性、能源储存问题、电网整合挑战,这些都是已发现的光伏微型电网存在的一些问题。前进的道路必须从缓解这些挑战开始。一些突出的解决方案包括实施先进的储能系统、制定旨在提高农村地区可负担性的可再生能源政策、与智能电网技术整合以及遵守电网规范以确保合规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photovoltaic mini-grid incorporation: The panacea for electricity crisis in sub-Saharan Africa

The electrification rate in sub-Saharan Africa, standing at 45% in 2018, is significantly lower when compared with global benchmarks. The 600 million individuals lacking access to electricity constitute over two-thirds of the worldwide aggregate of the population lacking electricity. Limitations of power grids have placed a disproportionate burden of the lack of energy access on rural populations. The cheapest approach to achieving universal electricity access in numerous regions seems to be rooted in renewable energy. The diminishing cost of small-scale solar photovoltaic technology for solar home systems and mini-grids is expected to play a pivotal role in facilitating the provision of affordable electric power to millions. This study aims to elucidate the techno-economic benefits of augmenting photovoltaic mini-grids with the overarching goal of advocating for the adoption of photovoltaic mini-grid solutions in rural electrification in Sub-Saharan Africa. Prior research endeavors on rural electrification and photovoltaic mini-grids were meticulously curated and examined, with some attention also given to assessing the feasibility of grid integration. The findings showed that grid extension is the most cost-effective means of electricity delivery within a limited proximity, contingent upon topographical considerations. However, beyond this limited zone, mini-grids have proven to be more apt for providing affordable electricity to clustered customer populations. But mini-grids are not without challenges. High initial cost of installation, intermittency of energy source, energy storage problems, grid integration challenges, are some of the identified problems of photovoltaic mini-grids. The way forward must begin with the mitigation of these challenges. Some of the highlighted solutions include implementation of advanced energy storage systems, the formulation of renewable energy policies geared towards enhancing affordability in rural settings, integration with smart grid technologies, and adherence to grid codes to ensure compliance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Assessing climate strategies of major energy corporations and examining projections in relation to Paris Agreement objectives within the framework of sustainable energy Reservoir evaluation method based on explainable machine learning with small samples Thermodynamic analysis for definition of low-potential heat sources The influence of pore throat heterogeneity and fractal characteristics on reservoir quality: A case study of chang 8 member tight sandstones, Ordos Basin Transitioning to sustainable economic resilience through renewable energy and green hydrogen: The case of Iraq
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1