基于时间离散动量共识的优化算法及其在 Lyapunov 函数近似中的应用

Seung-Yeal Ha, Gyuyoung Hwang, Sungyoon Kim
{"title":"基于时间离散动量共识的优化算法及其在 Lyapunov 函数近似中的应用","authors":"Seung-Yeal Ha, Gyuyoung Hwang, Sungyoon Kim","doi":"10.1142/s0218202524400104","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a discrete momentum consensus-based optimization (Momentum-CBO) algorithm which corresponds to a second-order generalization of the discrete first-order CBO [S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm, <i>Math. Models Methods Appl. Sci.</i><b>30</b> (2020) 2417–2444]. The proposed algorithm can be understood as the modification of ADAM-CBO, replacing the normalization term by unity. For the proposed Momentum-CBO, we provide a sufficient framework which guarantees the convergence of algorithm toward a global minimum of the objective function. Moreover, we present several experimental results showing that Momentum-CBO has an improved success rate of finding the global minimum compared to vanilla-CBO and show the stability of Momentum-CBO under different initialization schemes. We also show that Momentum-CBO can be used as the alternative of ADAM-CBO which does not have a proper convergence analysis. Finally, we give an application of Momentum-CBO for Lyapunov function approximation using symbolic regression techniques.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-discrete momentum consensus-based optimization algorithm and its application to Lyapunov function approximation\",\"authors\":\"Seung-Yeal Ha, Gyuyoung Hwang, Sungyoon Kim\",\"doi\":\"10.1142/s0218202524400104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a discrete momentum consensus-based optimization (Momentum-CBO) algorithm which corresponds to a second-order generalization of the discrete first-order CBO [S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm, <i>Math. Models Methods Appl. Sci.</i><b>30</b> (2020) 2417–2444]. The proposed algorithm can be understood as the modification of ADAM-CBO, replacing the normalization term by unity. For the proposed Momentum-CBO, we provide a sufficient framework which guarantees the convergence of algorithm toward a global minimum of the objective function. Moreover, we present several experimental results showing that Momentum-CBO has an improved success rate of finding the global minimum compared to vanilla-CBO and show the stability of Momentum-CBO under different initialization schemes. We also show that Momentum-CBO can be used as the alternative of ADAM-CBO which does not have a proper convergence analysis. Finally, we give an application of Momentum-CBO for Lyapunov function approximation using symbolic regression techniques.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524400104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524400104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一种基于离散动量共识的优化(Momentum-CBO)算法,它相当于离散一阶 CBO [S.-Y. Ha, S. Jin and D. Kim, Convergence a first-order consensus-based global optimization algorithm, Math.Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm, Math. Models Methods Appl.30 (2020) 2417-2444]。所提出的算法可以理解为 ADAM-CBO 的改进,用统一值代替了归一化项。对于所提出的动量-CBO,我们提供了一个充分的框架,保证算法向目标函数的全局最小值收敛。此外,我们给出的几个实验结果表明,与 vanilla-CBO 相比,Momentum-CBO 找到全局最小值的成功率更高,并显示了 Momentum-CBO 在不同初始化方案下的稳定性。我们还证明了 Momentum-CBO 可以作为 ADAM-CBO 的替代方案,因为 ADAM-CBO 没有适当的收敛分析。最后,我们给出了动量-CBO 在使用符号回归技术进行 Lyapunov 函数逼近中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time-discrete momentum consensus-based optimization algorithm and its application to Lyapunov function approximation

In this paper, we study a discrete momentum consensus-based optimization (Momentum-CBO) algorithm which corresponds to a second-order generalization of the discrete first-order CBO [S.-Y. Ha, S. Jin and D. Kim, Convergence of a first-order consensus-based global optimization algorithm, Math. Models Methods Appl. Sci.30 (2020) 2417–2444]. The proposed algorithm can be understood as the modification of ADAM-CBO, replacing the normalization term by unity. For the proposed Momentum-CBO, we provide a sufficient framework which guarantees the convergence of algorithm toward a global minimum of the objective function. Moreover, we present several experimental results showing that Momentum-CBO has an improved success rate of finding the global minimum compared to vanilla-CBO and show the stability of Momentum-CBO under different initialization schemes. We also show that Momentum-CBO can be used as the alternative of ADAM-CBO which does not have a proper convergence analysis. Finally, we give an application of Momentum-CBO for Lyapunov function approximation using symbolic regression techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-by-step solving virtual element schemes based on scalar auxiliary variable with relaxation for Allen-Cahn type gradient flows Computational and Analytical Studies of a New Nonlocal Phase-Field Crystal Model in Two Dimensions On the continuum limit of epidemiological models on graphs: convergence and approximation results A nodally bound-preserving finite element method for reaction–convection–diffusion equations Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1