{"title":"小鼠酸味感应 III 型味觉受体细胞上表达的 A 型电压门控 K+ 电流的特征。","authors":"Takeru Moribayashi, Yoshiki Nakao, Yoshitaka Ohtubo","doi":"10.1007/s00441-024-03887-6","DOIUrl":null,"url":null,"abstract":"<p><p>Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K<sup>+</sup> currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K<sup>+</sup> currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K<sup>+</sup> currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K<sup>+</sup> currents which were completely inhibited by 10 mM TEA, whereas IP<sub>3</sub>R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K<sup>+</sup> currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K<sup>+</sup> channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K<sup>+</sup> channel phosphorylation likely affects the signal transduction of taste.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"353-369"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144136/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characteristics of A-type voltage-gated K<sup>+</sup> currents expressed on sour-sensing type III taste receptor cells in mice.\",\"authors\":\"Takeru Moribayashi, Yoshiki Nakao, Yoshitaka Ohtubo\",\"doi\":\"10.1007/s00441-024-03887-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K<sup>+</sup> currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K<sup>+</sup> currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K<sup>+</sup> currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K<sup>+</sup> currents which were completely inhibited by 10 mM TEA, whereas IP<sub>3</sub>R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K<sup>+</sup> currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K<sup>+</sup> channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K<sup>+</sup> channel phosphorylation likely affects the signal transduction of taste.</p>\",\"PeriodicalId\":9712,\"journal\":{\"name\":\"Cell and Tissue Research\",\"volume\":\" \",\"pages\":\"353-369\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144136/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00441-024-03887-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03887-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
酸味由 III 型味觉受体细胞检测到,这些细胞在盐酸作用于顶端膜时产生膜去极化动作电位。由于瞬时 A 型电压门控 K+ 电流被激活,III 型细胞的动作电位形状表现出较大的后超极化。虽然动作电位在神经递质释放中发挥着重要作用,但味蕾中 A 型 K+ 电流的电生理特征仍不清楚。在此,我们使用原位全细胞贴片钳检测了小鼠真菌味蕾细胞中 A 型 K+ 电流的电生理特性。通过 SNAP-25 免疫反应和/或电压门控电流的电生理特征鉴定出 III 型细胞。III 型细胞表达的 A 型 K+ 电流被 10 mM TEA 完全抑制,而 IP3R3 免疫反应的 II 型细胞则没有。A 型 K+ 电流的半最大激活和稳态失活分别为 17.9 ± 4.5 mV(n = 17)和 - 11.0 ± 5.7 mV(n = 17),这与 Kv3.3 和 Kv3.4 通道(瞬时和高电压激活的 K+ 通道)的特征相似。失活恢复与双指数方程拟合良好;快速和慢速时间常数分别为 6.4 ± 0.6 ms 和 0.76 ± 0.26 s(n = 6)。RT-PCR 实验表明,在味蕾水平检测到了 Kv3.3 和 Kv3.4 mRNA,但在单细胞水平没有检测到。由于 Kv3.3 和 Kv3.4 通道的磷酸化通常会导致细胞兴奋性的调节,因此神经调节剂介导的 A 型 K+ 通道磷酸化可能会影响味觉的信号转导。
Characteristics of A-type voltage-gated K+ currents expressed on sour-sensing type III taste receptor cells in mice.
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K+ currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K+ currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K+ currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K+ currents which were completely inhibited by 10 mM TEA, whereas IP3R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K+ currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K+ channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K+ channel phosphorylation likely affects the signal transduction of taste.
期刊介绍:
The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include:
- neurobiology
- neuroendocrinology
- endocrinology
- reproductive biology
- skeletal and immune systems
- development
- stem cells
- muscle biology.