Kostas Blekos , Dean Brand , Andrea Ceschini , Chiao-Hui Chou , Rui-Hao Li , Komal Pandya , Alessandro Summer
{"title":"量子近似优化算法及其变体综述","authors":"Kostas Blekos , Dean Brand , Andrea Ceschini , Chiao-Hui Chou , Rui-Hao Li , Komal Pandya , Alessandro Summer","doi":"10.1016/j.physrep.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1068 ","pages":"Pages 1-66"},"PeriodicalIF":23.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on Quantum Approximate Optimization Algorithm and its variants\",\"authors\":\"Kostas Blekos , Dean Brand , Andrea Ceschini , Chiao-Hui Chou , Rui-Hao Li , Komal Pandya , Alessandro Summer\",\"doi\":\"10.1016/j.physrep.2024.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1068 \",\"pages\":\"Pages 1-66\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157324001078\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324001078","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A review on Quantum Approximate Optimization Algorithm and its variants
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve combinatorial optimization problems that are classically intractable. This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios, its applicability across various problem instances, and considerations of hardware-specific challenges such as error susceptibility and noise resilience. Additionally, we conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm. We aim to provide insights into key questions about the algorithm, such as whether it can outperform classical algorithms and under what circumstances it should be used. Towards this goal, we offer specific practical points in a form of a short guide.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.