Yan Zhang, Peimin Liu, Shanzhi Yang, Jinyi Lan, Haosen Xu, Huan Jiang, Jiaoqing Li, Ting Zhang, Hong Zhang, Wenjuan Duan, Luigi Gnudi, Xiaoyan Bai
{"title":"Nogo-B 促进糖尿病肾病内皮细胞内质网应激介导的自噬。","authors":"Yan Zhang, Peimin Liu, Shanzhi Yang, Jinyi Lan, Haosen Xu, Huan Jiang, Jiaoqing Li, Ting Zhang, Hong Zhang, Wenjuan Duan, Luigi Gnudi, Xiaoyan Bai","doi":"10.1089/ars.2023.0490","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Endothelial cells are the critical targets of injury in diabetic nephropathy (DN), and endothelial cell lesions contribute to the disease progression. Neurite outgrowth inhibitor B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, plays a pivotal role in vascular remodeling after injury, and maintains the structure and function of the ER. Yet, the role of Nogo-B in the regulation of ER stress and endothelial cell injury remains largely unknown. Herein, we tested the hypothesis that Nogo-B activates ER stress-mediated autophagy and protects endothelial cells in DN. <b><i>Results:</i></b> The level of Nogo-B was decreased in glomerular endothelial cells in biopsy specimens from DN patients. <i>In vivo</i> and <i>in vitro</i> studies have shown that silencing Nogo-B activated ER stress signaling, and affected the expression of autophagy-related marker early growth response 1 and microtubule-associated protein light chain 3 (LC3) in endothelial cells in hyperglycemic condition. <b><i>Conclusion and Innovation:</i></b> These results denote that Nogo-B contributes to ER stress-mediated autophagy and protects endothelial cells in DN, providing new evidence for understanding the role of ER stress-mediated autophagy in endothelial cells of DN.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"706-722"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nogo-B Promotes Endoplasmic Reticulum Stress-Mediated Autophagy in Endothelial Cells of Diabetic Nephropathy.\",\"authors\":\"Yan Zhang, Peimin Liu, Shanzhi Yang, Jinyi Lan, Haosen Xu, Huan Jiang, Jiaoqing Li, Ting Zhang, Hong Zhang, Wenjuan Duan, Luigi Gnudi, Xiaoyan Bai\",\"doi\":\"10.1089/ars.2023.0490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aims:</i></b> Endothelial cells are the critical targets of injury in diabetic nephropathy (DN), and endothelial cell lesions contribute to the disease progression. Neurite outgrowth inhibitor B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, plays a pivotal role in vascular remodeling after injury, and maintains the structure and function of the ER. Yet, the role of Nogo-B in the regulation of ER stress and endothelial cell injury remains largely unknown. Herein, we tested the hypothesis that Nogo-B activates ER stress-mediated autophagy and protects endothelial cells in DN. <b><i>Results:</i></b> The level of Nogo-B was decreased in glomerular endothelial cells in biopsy specimens from DN patients. <i>In vivo</i> and <i>in vitro</i> studies have shown that silencing Nogo-B activated ER stress signaling, and affected the expression of autophagy-related marker early growth response 1 and microtubule-associated protein light chain 3 (LC3) in endothelial cells in hyperglycemic condition. <b><i>Conclusion and Innovation:</i></b> These results denote that Nogo-B contributes to ER stress-mediated autophagy and protects endothelial cells in DN, providing new evidence for understanding the role of ER stress-mediated autophagy in endothelial cells of DN.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"706-722\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0490\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0490","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目的:内皮细胞是糖尿病肾病(DN)的关键损伤靶点,内皮细胞病变导致疾病进展。Neurite outgrowth inhibitor B(Nogo-B)是一种内质网(ER)驻留蛋白,在损伤后的血管重塑中发挥着关键作用,并维持着内质网的结构和功能。然而,Nogo-B 在调节 ER 应激和内皮细胞损伤中的作用在很大程度上仍不为人所知。在此,我们检验了 Nogo-B 激活 ER 应激介导的自噬并保护糖尿病肾病内皮细胞的假设:结果:DN 患者活检标本中肾小球内皮细胞的 Nogo-B 水平下降。体内和体外研究表明,沉默 Nogo-B 可激活 ER 应激信号,并影响高血糖状态下内皮细胞中自噬相关标志物早期生长应答 1(EGR1)和微管相关蛋白轻链 3(LC3)的表达。结论与创新:这些结果表明,Nogo-B有助于ER应激介导的自噬,保护糖尿病肾病的内皮细胞,为了解ER应激介导的自噬在糖尿病肾病内皮细胞中的作用提供了新的证据。
Nogo-B Promotes Endoplasmic Reticulum Stress-Mediated Autophagy in Endothelial Cells of Diabetic Nephropathy.
Aims: Endothelial cells are the critical targets of injury in diabetic nephropathy (DN), and endothelial cell lesions contribute to the disease progression. Neurite outgrowth inhibitor B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, plays a pivotal role in vascular remodeling after injury, and maintains the structure and function of the ER. Yet, the role of Nogo-B in the regulation of ER stress and endothelial cell injury remains largely unknown. Herein, we tested the hypothesis that Nogo-B activates ER stress-mediated autophagy and protects endothelial cells in DN. Results: The level of Nogo-B was decreased in glomerular endothelial cells in biopsy specimens from DN patients. In vivo and in vitro studies have shown that silencing Nogo-B activated ER stress signaling, and affected the expression of autophagy-related marker early growth response 1 and microtubule-associated protein light chain 3 (LC3) in endothelial cells in hyperglycemic condition. Conclusion and Innovation: These results denote that Nogo-B contributes to ER stress-mediated autophagy and protects endothelial cells in DN, providing new evidence for understanding the role of ER stress-mediated autophagy in endothelial cells of DN.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology