Md Sadique Hasan, Chad Sundberg, Elias Gilotte, Xudong Ge, Yordan Kostov, Govind Rao
{"title":"以快速、超灵敏和高通量的方式检测地表水和水样中的生物负载。","authors":"Md Sadique Hasan, Chad Sundberg, Elias Gilotte, Xudong Ge, Yordan Kostov, Govind Rao","doi":"10.1002/btpr.3457","DOIUrl":null,"url":null,"abstract":"<p>Bioburden detection is crucial for food, water, and biopharmaceutical applications as it can directly impact public health. The objective of this study is to develop and validate an assay and protocol for detecting bioburden on solid surfaces, as well as in water, with high sensitivity and accuracy in a rapid manner. Henceforth, a resazurin-based assay optimized for detecting bioburden has been integrated with a previously developed portable multichannel fluorometer. The microbes were isolated from solid surfaces in different laboratory settings by swabbing technique, and stream water was collected for contamination analysis. Based on the results, the assay and protocol can successfully detect bioburden as low as 20 CFU/cm<sup>2</sup> and 10 CFU/mL present in both surface and water samples, respectively.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"40 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioburden detection on surface and water samples in a rapid, ultra-sensitive and high-throughput manner\",\"authors\":\"Md Sadique Hasan, Chad Sundberg, Elias Gilotte, Xudong Ge, Yordan Kostov, Govind Rao\",\"doi\":\"10.1002/btpr.3457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioburden detection is crucial for food, water, and biopharmaceutical applications as it can directly impact public health. The objective of this study is to develop and validate an assay and protocol for detecting bioburden on solid surfaces, as well as in water, with high sensitivity and accuracy in a rapid manner. Henceforth, a resazurin-based assay optimized for detecting bioburden has been integrated with a previously developed portable multichannel fluorometer. The microbes were isolated from solid surfaces in different laboratory settings by swabbing technique, and stream water was collected for contamination analysis. Based on the results, the assay and protocol can successfully detect bioburden as low as 20 CFU/cm<sup>2</sup> and 10 CFU/mL present in both surface and water samples, respectively.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\"40 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3457\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3457","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Bioburden detection on surface and water samples in a rapid, ultra-sensitive and high-throughput manner
Bioburden detection is crucial for food, water, and biopharmaceutical applications as it can directly impact public health. The objective of this study is to develop and validate an assay and protocol for detecting bioburden on solid surfaces, as well as in water, with high sensitivity and accuracy in a rapid manner. Henceforth, a resazurin-based assay optimized for detecting bioburden has been integrated with a previously developed portable multichannel fluorometer. The microbes were isolated from solid surfaces in different laboratory settings by swabbing technique, and stream water was collected for contamination analysis. Based on the results, the assay and protocol can successfully detect bioburden as low as 20 CFU/cm2 and 10 CFU/mL present in both surface and water samples, respectively.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.