低可观测无人战斗飞行器的实时路线规划

Yuanchao Yang
{"title":"低可观测无人战斗飞行器的实时路线规划","authors":"Yuanchao Yang","doi":"10.1002/adc2.194","DOIUrl":null,"url":null,"abstract":"<p>The next generation of low observable (LO) unmanned combat aerial vehicle (UCAV) with highly autonomy to implement a penetration mission requires advanced methods for flyable and safe route planning (i.e., respecting physical capability of vehicle and threat coverage by hostile air defense radars) at a real-time manner. Currently, the main challenge of real-time route planning for LO UCAV is to achieve computationally efficiency under dynamic (pop-up/moving) threats by air defense radars. In this paper, a real-time planning paradigm in compliance with complex penetration requirements is proposed, and a complete modeling of route planning for LO UCAV's penetration as an optimal control problem is designed. The paper at first devises a direct method to transform the optimal control problem into a nonlinear programming (NLP) problem and then solves the formulated NLP problem under a moving planning horizon. The proposed method can give computationally efficient route planning results for LO UCAV's penetration under multiple kinds of radar threats. Numerical test results based on F-16 uninhabited platform demonstrate the effectiveness of the proposed method.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.194","citationCount":"0","resultStr":"{\"title\":\"Real-time route planning for low observable unmanned combat aerial vehicle\",\"authors\":\"Yuanchao Yang\",\"doi\":\"10.1002/adc2.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The next generation of low observable (LO) unmanned combat aerial vehicle (UCAV) with highly autonomy to implement a penetration mission requires advanced methods for flyable and safe route planning (i.e., respecting physical capability of vehicle and threat coverage by hostile air defense radars) at a real-time manner. Currently, the main challenge of real-time route planning for LO UCAV is to achieve computationally efficiency under dynamic (pop-up/moving) threats by air defense radars. In this paper, a real-time planning paradigm in compliance with complex penetration requirements is proposed, and a complete modeling of route planning for LO UCAV's penetration as an optimal control problem is designed. The paper at first devises a direct method to transform the optimal control problem into a nonlinear programming (NLP) problem and then solves the formulated NLP problem under a moving planning horizon. The proposed method can give computationally efficient route planning results for LO UCAV's penetration under multiple kinds of radar threats. Numerical test results based on F-16 uninhabited platform demonstrate the effectiveness of the proposed method.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.194\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代低可观测(LO)无人战斗飞行器(UCAV)具有高度自主性,可执行穿透任务,需要先进的方法来实时规划可飞行的安全路线(即尊重飞行器的物理能力和敌方防空雷达的威胁覆盖范围)。目前,LO UCAV 实时路线规划的主要挑战是如何在防空雷达的动态(弹出/移动)威胁下实现计算效率。本文提出了一种符合复杂穿透要求的实时规划范式,并将 LO UCAV 的穿透路线规划设计成一个完整的最优控制问题模型。本文首先设计了一种将最优控制问题转化为非线性编程(NLP)问题的直接方法,然后在移动规划视界下求解了所制定的 NLP 问题。所提出的方法可以给出在多种雷达威胁下,LO UCAV 穿透路线规划的高效计算结果。基于 F-16 无人平台的数值测试结果证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time route planning for low observable unmanned combat aerial vehicle

The next generation of low observable (LO) unmanned combat aerial vehicle (UCAV) with highly autonomy to implement a penetration mission requires advanced methods for flyable and safe route planning (i.e., respecting physical capability of vehicle and threat coverage by hostile air defense radars) at a real-time manner. Currently, the main challenge of real-time route planning for LO UCAV is to achieve computationally efficiency under dynamic (pop-up/moving) threats by air defense radars. In this paper, a real-time planning paradigm in compliance with complex penetration requirements is proposed, and a complete modeling of route planning for LO UCAV's penetration as an optimal control problem is designed. The paper at first devises a direct method to transform the optimal control problem into a nonlinear programming (NLP) problem and then solves the formulated NLP problem under a moving planning horizon. The proposed method can give computationally efficient route planning results for LO UCAV's penetration under multiple kinds of radar threats. Numerical test results based on F-16 uninhabited platform demonstrate the effectiveness of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Efficient parameter estimation for second order plus dead time systems in process plant control Optimal installation of DG in radial distribution network using arithmetic optimization algorithm To cascade feedback loops, or not? A novel modulation for four-switch Buck-boost converter to eliminate the right half plane zero point
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1