植物相关细菌和酶支持卡纳瓦利亚玫瑰在沿海高盐度土壤中生长

IF 2.1 3区 生物学 Q3 MICROBIOLOGY Symbiosis Pub Date : 2024-03-14 DOI:10.1007/s13199-024-00977-5
Sithabile Mbonambi, Nqobile Motsomane, Syd Ramdhani, María A. Pérez-Fernández, Anathi Magadlela
{"title":"植物相关细菌和酶支持卡纳瓦利亚玫瑰在沿海高盐度土壤中生长","authors":"Sithabile Mbonambi, Nqobile Motsomane, Syd Ramdhani, María A. Pérez-Fernández, Anathi Magadlela","doi":"10.1007/s13199-024-00977-5","DOIUrl":null,"url":null,"abstract":"<p><i>Canavalia rosea</i> is an extremophilic legume that grows in hypersaline and nutrient-deficient ecosystems. The extremophilic nature of <i>C. rosea</i> may be attributed to its ability to establish symbiotic associations with nutrient mineralizing and plant growth promoting (PGP) bacteria housed in the nodules. This study examined legume-microbe symbiosis and plant nutrition of <i>C. rosea</i> growing in subtropical coastal zone in KwaZulu-Natal province, South Africa. <i>Canavalia rosea</i> adult plants of the same age from Westbrook, Scottburgh and Durban were collected for plant biomass and plant nutrition and root nodules were used for bacterial extraction and identification. Rhizosphere soils sampled from the three localities were used for bacterial extraction and identification, extracellular enzyme assays and soil characteristics (pH, nutrient concentrations, total cation, and exchange acidity). Westbrook, Scottburgh and Durban soils were nutrient-deficient with varying total cations, acid saturation and a pH range of 7.3–7.6. Soil nutrient mineralizing extracellular enzyme activities varied across study sites. The culturable bacterial strains isolated from the sampled soils belonged to the <i>Pseudomonas</i>, <i>Pantoea</i> and <i>Flavobacterium</i> genera. <i>Canavalia rosea</i> root nodules were nodulated by <i>Pseudomonas guariconensis</i>, <i>Pseudomonas fulva, Pseudomonas fluorescens, Pseudomonas chlororaphis</i> and <i>Pseudomonas chlororaphis subsp. aurantiaca.</i> Plants growing in Westbrook soils had a significantly higher total plant biomass compared to Scottburgh and Durban plants. Plant P concentration did not vary significantly between sites while plant N and C concentrations varied significantly. Plant-associated and soil bacteria with phosphorus (P) solubilising, nitrogen (N) cycling, and N fixing functions and associated enzymes seem to facilitate the mobilization of nutrients enabling <i>C. rosea</i> to thrive in hypersaline and low-nutrient environments.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant-associated bacteria and enzymes support Canavalia rosea growth in coastal hypersaline soils\",\"authors\":\"Sithabile Mbonambi, Nqobile Motsomane, Syd Ramdhani, María A. Pérez-Fernández, Anathi Magadlela\",\"doi\":\"10.1007/s13199-024-00977-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Canavalia rosea</i> is an extremophilic legume that grows in hypersaline and nutrient-deficient ecosystems. The extremophilic nature of <i>C. rosea</i> may be attributed to its ability to establish symbiotic associations with nutrient mineralizing and plant growth promoting (PGP) bacteria housed in the nodules. This study examined legume-microbe symbiosis and plant nutrition of <i>C. rosea</i> growing in subtropical coastal zone in KwaZulu-Natal province, South Africa. <i>Canavalia rosea</i> adult plants of the same age from Westbrook, Scottburgh and Durban were collected for plant biomass and plant nutrition and root nodules were used for bacterial extraction and identification. Rhizosphere soils sampled from the three localities were used for bacterial extraction and identification, extracellular enzyme assays and soil characteristics (pH, nutrient concentrations, total cation, and exchange acidity). Westbrook, Scottburgh and Durban soils were nutrient-deficient with varying total cations, acid saturation and a pH range of 7.3–7.6. Soil nutrient mineralizing extracellular enzyme activities varied across study sites. The culturable bacterial strains isolated from the sampled soils belonged to the <i>Pseudomonas</i>, <i>Pantoea</i> and <i>Flavobacterium</i> genera. <i>Canavalia rosea</i> root nodules were nodulated by <i>Pseudomonas guariconensis</i>, <i>Pseudomonas fulva, Pseudomonas fluorescens, Pseudomonas chlororaphis</i> and <i>Pseudomonas chlororaphis subsp. aurantiaca.</i> Plants growing in Westbrook soils had a significantly higher total plant biomass compared to Scottburgh and Durban plants. Plant P concentration did not vary significantly between sites while plant N and C concentrations varied significantly. Plant-associated and soil bacteria with phosphorus (P) solubilising, nitrogen (N) cycling, and N fixing functions and associated enzymes seem to facilitate the mobilization of nutrients enabling <i>C. rosea</i> to thrive in hypersaline and low-nutrient environments.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00977-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00977-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卡纳瓦利亚蔷薇是一种嗜极豆科植物,可在高盐和营养缺乏的生态系统中生长。蔷薇属豆科植物的嗜极性可能是由于它能够与营养矿化菌和寄生在结核中的植物生长促进菌(PGP)建立共生关系。本研究考察了生长在南非夸祖鲁-纳塔尔省亚热带沿海地区的蔷薇属豆科植物与微生物的共生关系和植物营养状况。研究人员采集了 Westbrook、Scottburgh 和 Durban 的同龄 Canavalia rosea 成株,以测定植物生物量和植物营养,并利用根瘤提取和鉴定细菌。从这三个地方采集的根瘤土壤样本用于细菌提取和鉴定、细胞外酶测定和土壤特性(pH 值、养分浓度、阳离子总量和交换酸度)。Westbrook、Scottburgh 和 Durban 的土壤养分缺乏,总阳离子和酸饱和度各不相同,pH 值范围为 7.3-7.6。不同研究地点的土壤养分矿化胞外酶活性各不相同。从取样土壤中分离出的可培养细菌菌株属于假单胞菌属、泛氏菌属和黄杆菌属。瓜氏假单胞菌(Pseudomonas guariconensis)、富尔瓦假单胞菌(Pseudomonas fulva)、荧光假单胞菌(Pseudomonas fluorescens)、绿假单胞菌(Pseudomonas chlororaphis)和绿假单胞菌亚种(Pseudomonas chlororaphis subsp.与斯科特堡和德班的植物相比,生长在 Westbrook 土壤中的植物总生物量明显更高。不同地点的植物钾浓度差异不大,而植物氮和碳的浓度差异很大。具有磷(P)溶解、氮(N)循环和氮固定功能的植物相关细菌和土壤细菌以及相关酶似乎有助于养分的调动,使蔷薇科植物能够在高盐和低养分环境中茁壮成长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant-associated bacteria and enzymes support Canavalia rosea growth in coastal hypersaline soils

Canavalia rosea is an extremophilic legume that grows in hypersaline and nutrient-deficient ecosystems. The extremophilic nature of C. rosea may be attributed to its ability to establish symbiotic associations with nutrient mineralizing and plant growth promoting (PGP) bacteria housed in the nodules. This study examined legume-microbe symbiosis and plant nutrition of C. rosea growing in subtropical coastal zone in KwaZulu-Natal province, South Africa. Canavalia rosea adult plants of the same age from Westbrook, Scottburgh and Durban were collected for plant biomass and plant nutrition and root nodules were used for bacterial extraction and identification. Rhizosphere soils sampled from the three localities were used for bacterial extraction and identification, extracellular enzyme assays and soil characteristics (pH, nutrient concentrations, total cation, and exchange acidity). Westbrook, Scottburgh and Durban soils were nutrient-deficient with varying total cations, acid saturation and a pH range of 7.3–7.6. Soil nutrient mineralizing extracellular enzyme activities varied across study sites. The culturable bacterial strains isolated from the sampled soils belonged to the Pseudomonas, Pantoea and Flavobacterium genera. Canavalia rosea root nodules were nodulated by Pseudomonas guariconensis, Pseudomonas fulva, Pseudomonas fluorescens, Pseudomonas chlororaphis and Pseudomonas chlororaphis subsp. aurantiaca. Plants growing in Westbrook soils had a significantly higher total plant biomass compared to Scottburgh and Durban plants. Plant P concentration did not vary significantly between sites while plant N and C concentrations varied significantly. Plant-associated and soil bacteria with phosphorus (P) solubilising, nitrogen (N) cycling, and N fixing functions and associated enzymes seem to facilitate the mobilization of nutrients enabling C. rosea to thrive in hypersaline and low-nutrient environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symbiosis
Symbiosis 生物-微生物学
CiteScore
4.80
自引率
8.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field. Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.
期刊最新文献
Fungal community structure in bees: influence of biome and host species The monodominant species Spirotropis longifolia is mainly nodulated by strains of the genus Bradyrhizobium outside the B. japonicum and B. elkanii superclades The soil legacy produced by grass-endophyte-mycorrhizae fungi interaction increases legume establishment Are the symbiont faunas of the venomous echinoids Toxopneustes pileolus and Tripneustes gratilla (Echinoidea, Toxopneustidae) similar? Microbiome diversity and composition across development stages of the Blue Orchard Bee, Osmia lignaria (Megachilidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1