{"title":"用于低功耗有机场效应晶体管的高介电常数聚合物电介质的最新进展","authors":"Yang Li, Mingqian He","doi":"10.1557/s43579-024-00538-3","DOIUrl":null,"url":null,"abstract":"<p>While efforts have been made to optimize organic semiconducting materials to achieve low-power-consumption organic field-effect transistors (OFETs), it is important to note that the choice of gate dielectric materials is equally critical. In general, a high-<i>k</i> polymer dielectric material is highly preferred for low-power-consumption OFETs. In this perspective, we highlight several newly emerged strategies for high dielectric constant polymer dielectrics. By exploiting the recent advances in molecular modulation and morphology control, these new strategies enable remarkably high dielectric constant up to 25–30 for polymer dielectrics, while still maintaining dielectric losses below 0.01 at 1 kHz. We further analyze the advantages and disadvantages of these strategies and propose four design principles—side-chain dipole, rigid free volume, self-assembly, and thermosets—for future polymer gate dielectrics in OFETs.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"68 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in achieving high dielectric constant polymer dielectrics for low-power-consumption organic field-effect transistors\",\"authors\":\"Yang Li, Mingqian He\",\"doi\":\"10.1557/s43579-024-00538-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While efforts have been made to optimize organic semiconducting materials to achieve low-power-consumption organic field-effect transistors (OFETs), it is important to note that the choice of gate dielectric materials is equally critical. In general, a high-<i>k</i> polymer dielectric material is highly preferred for low-power-consumption OFETs. In this perspective, we highlight several newly emerged strategies for high dielectric constant polymer dielectrics. By exploiting the recent advances in molecular modulation and morphology control, these new strategies enable remarkably high dielectric constant up to 25–30 for polymer dielectrics, while still maintaining dielectric losses below 0.01 at 1 kHz. We further analyze the advantages and disadvantages of these strategies and propose four design principles—side-chain dipole, rigid free volume, self-assembly, and thermosets—for future polymer gate dielectrics in OFETs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00538-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00538-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advancements in achieving high dielectric constant polymer dielectrics for low-power-consumption organic field-effect transistors
While efforts have been made to optimize organic semiconducting materials to achieve low-power-consumption organic field-effect transistors (OFETs), it is important to note that the choice of gate dielectric materials is equally critical. In general, a high-k polymer dielectric material is highly preferred for low-power-consumption OFETs. In this perspective, we highlight several newly emerged strategies for high dielectric constant polymer dielectrics. By exploiting the recent advances in molecular modulation and morphology control, these new strategies enable remarkably high dielectric constant up to 25–30 for polymer dielectrics, while still maintaining dielectric losses below 0.01 at 1 kHz. We further analyze the advantages and disadvantages of these strategies and propose four design principles—side-chain dipole, rigid free volume, self-assembly, and thermosets—for future polymer gate dielectrics in OFETs.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.