首页 > 最新文献

MRS Communications最新文献

英文 中文
Investigating the beneficial effects of a WO3 seed layer on the mechanical and photoelectrochemical stability of WO3|BiVO4|NiFeOOH photoanodes under operational conditions. 在工作条件下,研究WO3种子层对WO3|BiVO4|NiFeOOH光阳极机械和光电化学稳定性的有利影响。
IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-08-18 DOI: 10.1557/s43579-025-00788-9
George H Creasey, Andreas Kafizas, Anna Hankin

Scalable and durable photoelectrodes are essential for technological breakthroughs in photoelectrochemical systems, yet the fragility of nanostructured photocatalyst materials in industrially relevant operating conditions is rarely explored. Herein, we advance understanding of the importance of morphology and temperature on stability and performance of nanostructured WO3|BiVO4|NiFeOOH photoanodes. The integration of a planar WO3 seed layer beneath nanostructured WO3, improved mechanical stability at 40°C with flowing electrolyte approximately twofold compared with materials where a seed layer was not integrated. This work provides a pathway through which robust photoelectrode systems can be engineered to enable the advancement of up-scaled photoelectrochemical water splitting.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1557/s43579-025-00788-9.

可扩展和耐用的光电极对于光电化学系统的技术突破至关重要,然而纳米结构光催化剂材料在工业相关操作条件下的脆弱性却很少被探索。在此,我们进一步了解了形貌和温度对纳米结构WO3|BiVO4|NiFeOOH光阳极的稳定性和性能的重要性。在纳米结构的WO3下面集成了平面WO3种子层,与没有集成种子层的材料相比,在40°C下流动电解质下的机械稳定性提高了大约两倍。这项工作提供了一条途径,通过该途径可以设计健壮的光电极系统,以实现大规模光电化学水分解的进步。图片摘要:补充信息:在线版本包含补充资料,可在10.1557/s43579-025-00788-9获得。
{"title":"Investigating the beneficial effects of a WO<sub>3</sub> seed layer on the mechanical and photoelectrochemical stability of WO<sub>3</sub>|BiVO<sub>4</sub>|NiFeOOH photoanodes under operational conditions.","authors":"George H Creasey, Andreas Kafizas, Anna Hankin","doi":"10.1557/s43579-025-00788-9","DOIUrl":"10.1557/s43579-025-00788-9","url":null,"abstract":"<p><p>Scalable and durable photoelectrodes are essential for technological breakthroughs in photoelectrochemical systems, yet the fragility of nanostructured photocatalyst materials in industrially relevant operating conditions is rarely explored. Herein, we advance understanding of the importance of morphology and temperature on stability and performance of nanostructured WO<sub>3</sub>|BiVO<sub>4</sub>|NiFeOOH photoanodes. The integration of a planar WO<sub>3</sub> seed layer beneath nanostructured WO<sub>3</sub>, improved mechanical stability at 40°C with flowing electrolyte approximately twofold compared with materials where a seed layer was not integrated. This work provides a pathway through which robust photoelectrode systems can be engineered to enable the advancement of up-scaled photoelectrochemical water splitting.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1557/s43579-025-00788-9.</p>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 4","pages":"721-730"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484363/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials approaches for next-generation encapsulated cell therapies. 新一代包膜细胞治疗的材料方法。
IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI: 10.1557/s43579-024-00678-6
Siddharth R Krishnan, Robert Langer, Daniel G Anderson

Transplanted cells can act as living drug factories capable of secreting therapeutic proteins in vivo, with applications in the treatment of Type 1 diabetes (T1D), blood borne disease, vision disorders, and degenerative neural disease, potentially representing functional cures for chronic conditions. However, attack from the host immune system represents a major challenge, requiring chronic immunosuppression to enable long-lived cell transplantation in vivo. Encapsulating cells in engineered biomaterials capable of excluding components of the host immune system while allowing for the transport of therapeutic proteins, oxygen, nutrients, metabolites, and waste products represents a potential solution. However, the foreign-body response can lead to isolation from native vasculature and hypoxia leading to cell death. In this prospective article, we highlight materials-based solutions to three important challenges in the field: (i) improving biocompatibility and reducing fibrosis; (ii) enhancing transport of secreted protein drugs and key nutrients and oxygen via engineered, semipermeable membranes; and (iii) improving oxygenation. These efforts draw on several disciplines in materials' research, including polymer science, surfaces, membranes, biomaterials' microfabrication, and flexible electronics. If successful, these efforts could lead to new therapies for chronic disease and are a rich space for both fundamental materials' discovery and applied translational science.

Graphical abstract:

移植细胞可以作为活的药物工厂,能够在体内分泌治疗性蛋白,应用于治疗1型糖尿病(T1D)、血源性疾病、视力障碍和退行性神经疾病,可能代表慢性疾病的功能性治愈。然而,来自宿主免疫系统的攻击是一个主要的挑战,需要慢性免疫抑制才能在体内实现长寿命的细胞移植。将细胞包裹在能够排除宿主免疫系统成分的工程生物材料中,同时允许治疗性蛋白质、氧气、营养物质、代谢物和废物的运输,这是一种潜在的解决方案。然而,异物反应可导致与原生脉管系统隔离和缺氧导致细胞死亡。在这篇前瞻性的文章中,我们强调了基于材料的解决方案,以应对该领域的三个重要挑战:(i)改善生物相容性和减少纤维化;(ii)通过工程半透膜增强分泌蛋白药物、关键营养物质和氧气的运输;(三)改善氧合。这些努力借鉴了材料研究的几个学科,包括聚合物科学、表面、膜、生物材料的微加工和柔性电子学。如果成功,这些努力可能会导致慢性疾病的新疗法,并为基础材料的发现和应用转化科学提供丰富的空间。图形化的简介:
{"title":"Materials approaches for next-generation encapsulated cell therapies.","authors":"Siddharth R Krishnan, Robert Langer, Daniel G Anderson","doi":"10.1557/s43579-024-00678-6","DOIUrl":"10.1557/s43579-024-00678-6","url":null,"abstract":"<p><p>Transplanted cells can act as living drug factories capable of secreting therapeutic proteins <i>in vivo</i>, with applications in the treatment of Type 1 diabetes (T1D), blood borne disease, vision disorders, and degenerative neural disease, potentially representing functional cures for chronic conditions. However, attack from the host immune system represents a major challenge, requiring chronic immunosuppression to enable long-lived cell transplantation <i>in vivo</i>. Encapsulating cells in engineered biomaterials capable of excluding components of the host immune system while allowing for the transport of therapeutic proteins, oxygen, nutrients, metabolites, and waste products represents a potential solution. However, the foreign-body response can lead to isolation from native vasculature and hypoxia leading to cell death. In this prospective article, we highlight materials-based solutions to three important challenges in the field: (i) improving biocompatibility and reducing fibrosis; (ii) enhancing transport of secreted protein drugs and key nutrients and oxygen <i>via</i> engineered, semipermeable membranes; and (iii) improving oxygenation. These efforts draw on several disciplines in materials' research, including polymer science, surfaces, membranes, biomaterials' microfabrication, and flexible electronics. If successful, these efforts could lead to new therapies for chronic disease and are a rich space for both fundamental materials' discovery and applied translational science.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 1","pages":"21-33"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825545/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optoionics: New opportunity for ionic conduction-based radiation detection. 光电子学:离子传导辐射探测的新机遇。
IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-05-13 DOI: 10.1557/s43579-025-00726-9
Thomas Defferriere, Harry L Tuller

Optoionics, involving light-modulated ionic transport in ionic solids, parallels optoelectronics in semiconductors and offers novel device design opportunities across various fields. Among these opportunities, grain boundary phenomena related to radiation-induced electron/hole pair generation and charge trapping at the boundaries causing a modulation in ionic current could enable fast, sensitive, and reversible radiation detectors. The robustness of ionic solids in chemical, structural, and thermal aspects in turn makes them scalable and robust alternatives to traditional semiconductor detectors. This article explores the theoretical underpinnings, experimental breakthroughs, and design considerations needed to optimize such optoionic devices.

Graphical abstract:

光电子学涉及离子固体中的光调制离子传输,与半导体中的光电子学平行,并在各个领域提供了新的器件设计机会。在这些机会中,与辐射诱导的电子/空穴对产生和边界上引起离子电流调制的电荷捕获有关的晶界现象可以实现快速,灵敏和可逆的辐射探测器。离子固体在化学、结构和热方面的坚固性反过来使它们成为传统半导体探测器的可扩展和坚固的替代品。本文探讨了优化这种光离子器件所需的理论基础、实验突破和设计考虑。图形化的简介:
{"title":"Optoionics: New opportunity for ionic conduction-based radiation detection.","authors":"Thomas Defferriere, Harry L Tuller","doi":"10.1557/s43579-025-00726-9","DOIUrl":"10.1557/s43579-025-00726-9","url":null,"abstract":"<p><p>Optoionics, involving light-modulated ionic transport in ionic solids, parallels optoelectronics in semiconductors and offers novel device design opportunities across various fields. Among these opportunities, grain boundary phenomena related to radiation-induced electron/hole pair generation and charge trapping at the boundaries causing a modulation in ionic current could enable fast, sensitive, and reversible radiation detectors. The robustness of ionic solids in chemical, structural, and thermal aspects in turn makes them scalable and robust alternatives to traditional semiconductor detectors. This article explores the theoretical underpinnings, experimental breakthroughs, and design considerations needed to optimize such optoionic devices.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 3","pages":"523-532"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing and rheological characterization of ceramic matrix composite inks with high fiber volume loadings. 高纤维体积负载陶瓷基复合油墨的增材制造和流变特性。
IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-07-31 DOI: 10.1557/s43579-025-00780-3
Mitchell R Donoughue, Joshua D Anderson, Dev I Thawani, Jean Corraliza-Rodriguez, Anna Mathis, Monique S McClain

Additive manufacturing of fiber-filled ceramic matrix composites (CMCs) can be used to tune local properties via controlled fiber orientation. Increasing the loading of fibers in additively manufactured CMCs is needed to improve the fracture toughness, yet printing CMCs with high fiber loadings (> 20 vol%) remains challenging. In this work, the combination of viscous silicon oxycarbide preceramic resins, short carbon fibers (50 µm × 7 µm), and Vibration-Assisted Printing enable printing of a mixture with 39.4-vol.% carbon fiber (total loading of 43.3 vol%) with omnidirectional fibers within the bead.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1557/s43579-025-00780-3.

增材制造纤维填充陶瓷基复合材料(CMCs)可以通过控制纤维取向来调整局部性能。增材制造cmc需要增加纤维的载荷来提高断裂韧性,但打印高纤维载荷(bbb20 vol%)的cmc仍然具有挑战性。在这项工作中,粘性碳化硅预陶瓷树脂、短碳纤维(50µm × 7µm)和振动辅助打印的组合使39.4 vol的混合物打印成为可能。碳纤维(总载荷为43.3%),头内有全向纤维。图片摘要:补充信息:在线版本包含补充资料,可在10.1557/s43579-025-00780-3获得。
{"title":"Additive manufacturing and rheological characterization of ceramic matrix composite inks with high fiber volume loadings.","authors":"Mitchell R Donoughue, Joshua D Anderson, Dev I Thawani, Jean Corraliza-Rodriguez, Anna Mathis, Monique S McClain","doi":"10.1557/s43579-025-00780-3","DOIUrl":"10.1557/s43579-025-00780-3","url":null,"abstract":"<p><p>Additive manufacturing of fiber-filled ceramic matrix composites (CMCs) can be used to tune local properties <i>via</i> controlled fiber orientation. Increasing the loading of fibers in additively manufactured CMCs is needed to improve the fracture toughness, yet printing CMCs with high fiber loadings (> 20 vol%) remains challenging. In this work, the combination of viscous silicon oxycarbide preceramic resins, short carbon fibers (50 µm × 7 µm), and Vibration-Assisted Printing enable printing of a mixture with 39.4-vol.% carbon fiber (total loading of 43.3 vol%) with omnidirectional fibers within the bead.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1557/s43579-025-00780-3.</p>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 4","pages":"674-681"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145213175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-stimulation with equibiaxial strain and pre-osteoblast co-culture differentiates monocytes in a bone model. 在骨模型中,等双轴应变和前成骨细胞共培养的共刺激可分化单核细胞。
IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-01-01 Epub Date: 2025-04-17 DOI: 10.1557/s43579-025-00711-2
Maria R Ward Rashidi, Catherine S Snyder, Kathleen M Burkhard, Raneem Ahmad, Isha Bhorkar, Geeta Mehta

Bone remodeling and immune function are dynamically regulated through cell-cell and cell-matrix interactions by stem and mature cell populations. We investigated the hypothesis that monocytes and pre-osteoblasts respond to cyclic tensile stress and paracrine interactions by differentiating into macrophage-like and osteoblast-like cells. 20% cyclic equibiaxial strain was applied to monocytic U937 and pre-osteoblastic ST2 cells for 72 h. Increased levels of CD11B, CD14, IL-6, and IL-8 in U937 indicated monocytic differentiation. Increased ALP expression and calcium deposition in ST2 indicated differentiation towards osteoblastic lineage. Overall, application of cyclic strain and pre-osteoblastic co-culture induced differentiation in this cyclically strained bone model.

Graphical abstract:

骨重塑和免疫功能是通过干细胞和成熟细胞群的细胞-细胞和细胞-基质相互作用动态调节的。我们研究了单核细胞和前成骨细胞通过分化为巨噬细胞样细胞和成骨细胞样细胞来响应循环拉伸应力和旁分泌相互作用的假设。将20%的循环等双轴菌株作用于单核细胞U937和成骨前ST2细胞72小时。U937中CD11B、CD14、IL-6和IL-8水平升高表明单核细胞分化。ST2中ALP表达和钙沉积的增加表明其向成骨细胞谱系分化。总的来说,应用循环应变和成骨前共培养诱导了这种循环应变骨模型的分化。图形化的简介:
{"title":"Co-stimulation with equibiaxial strain and pre-osteoblast co-culture differentiates monocytes in a bone model.","authors":"Maria R Ward Rashidi, Catherine S Snyder, Kathleen M Burkhard, Raneem Ahmad, Isha Bhorkar, Geeta Mehta","doi":"10.1557/s43579-025-00711-2","DOIUrl":"10.1557/s43579-025-00711-2","url":null,"abstract":"<p><p>Bone remodeling and immune function are dynamically regulated through cell-cell and cell-matrix interactions by stem and mature cell populations. We investigated the hypothesis that monocytes and pre-osteoblasts respond to cyclic tensile stress and paracrine interactions by differentiating into macrophage-like and osteoblast-like cells. 20% cyclic equibiaxial strain was applied to monocytic U937 and pre-osteoblastic ST2 cells for 72 h. Increased levels of CD11B, CD14, IL-6, and IL-8 in U937 indicated monocytic differentiation. Increased ALP expression and calcium deposition in ST2 indicated differentiation towards osteoblastic lineage. Overall, application of cyclic strain and pre-osteoblastic co-culture induced differentiation in this cyclically strained bone model.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"15 3","pages":"462-469"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144626752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Career Materials Researcher Issue 早期材料研究员问题
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1557/s43579-024-00646-0
Rigoberto C. Advincula
{"title":"Early Career Materials Researcher Issue","authors":"Rigoberto C. Advincula","doi":"10.1557/s43579-024-00646-0","DOIUrl":"https://doi.org/10.1557/s43579-024-00646-0","url":null,"abstract":"","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"39 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of fabrication-tolerant meta-atoms for polarization-multiplexed metasurfaces 为偏振多路复用元表面设计耐制造元原子
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-18 DOI: 10.1557/s43579-024-00629-1
Elissa Klopfer, Ighodalo Idehenre, Deanna Sessions, Michael J. Carter, Philip R. Buskohl, Eric S. Harper

Abstract

Metasurfaces can replace bulk optical components in a more compact form factor in applications including communication systems, sensors, and manufacturing technology. However, their design and fabrication is challenging due to competing demands of selecting meta-atoms that simultaneously provide the required amplitude and phase modulation while being robust to fabrication errors. Here, we develop two design heuristics to assist with the down-selection of meta-atoms into sensitivity-informed libraries, based on either selecting meta-atoms with minimal sensitivity or minimizing the relative sensitivities between meta-atoms. We evaluate both methods on a polarization-dependent phase mask and compare the resulting phase and intensity errors.

Graphical Abstract

摘要 在通信系统、传感器和制造技术等应用中,元表面能以更紧凑的外形取代散装光学元件。然而,由于需要选择同时提供所需的振幅和相位调制的元原子,而这些元原子的设计和制造又要对制造误差保持稳定,因此具有很大的挑战性。在此,我们开发了两种设计启发式方法,以帮助将元原子向下选择到灵敏度信息库中,其基础是选择灵敏度最低的元原子或将元原子间的相对灵敏度最小化。我们在偏振相关相位掩模上对这两种方法进行了评估,并比较了由此产生的相位和强度误差。
{"title":"Design of fabrication-tolerant meta-atoms for polarization-multiplexed metasurfaces","authors":"Elissa Klopfer, Ighodalo Idehenre, Deanna Sessions, Michael J. Carter, Philip R. Buskohl, Eric S. Harper","doi":"10.1557/s43579-024-00629-1","DOIUrl":"https://doi.org/10.1557/s43579-024-00629-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Metasurfaces can replace bulk optical components in a more compact form factor in applications including communication systems, sensors, and manufacturing technology. However, their design and fabrication is challenging due to competing demands of selecting meta-atoms that simultaneously provide the required amplitude and phase modulation while being robust to fabrication errors. Here, we develop two design heuristics to assist with the down-selection of meta-atoms into sensitivity-informed libraries, based on either selecting meta-atoms with minimal sensitivity or minimizing the relative sensitivities between meta-atoms. We evaluate both methods on a polarization-dependent phase mask and compare the resulting phase and intensity errors.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current trends in macromolecular synthesis of inorganic nanoparticles 无机纳米粒子大分子合成的当前趋势
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1557/s43579-024-00640-6
Brendan Karafinski, Nairiti Sinha

Inorganic nanoparticles are a critical component in a broad range of applications spanning catalysis, sensing, optics, and electronics. The nucleation and growth mechanisms involved during their synthesis are known to be crucial for controlling their final performance. Macromolecules can display sequence definition, inherent chirality, metal ion targeting moieties, and can also form self-assemblies, affording them the ability to not only stabilize but also precisely control the synthesis and organization of nanoparticles for an intended application. Herein, we report the recent trends in inorganic nanoparticle synthesis mediated by peptides, peptoids, DNA, other biopolymers, and synthetic polymers. Important design parameters and future trends are also discussed.

Graphical abstract

无机纳米粒子是催化、传感、光学和电子学等广泛应用中的重要组成部分。众所周知,合成过程中的成核和生长机制是控制其最终性能的关键。大分子可以显示序列定义、固有手性、金属离子靶向分子,还可以形成自组装,这使它们不仅能够稳定纳米粒子,还能精确控制纳米粒子的合成和组织,以达到预期的应用目的。在此,我们将报告以肽、蛋白胨、DNA、其他生物聚合物和合成聚合物为媒介的无机纳米粒子合成的最新趋势。我们还讨论了重要的设计参数和未来趋势。
{"title":"Current trends in macromolecular synthesis of inorganic nanoparticles","authors":"Brendan Karafinski, Nairiti Sinha","doi":"10.1557/s43579-024-00640-6","DOIUrl":"https://doi.org/10.1557/s43579-024-00640-6","url":null,"abstract":"<p>Inorganic nanoparticles are a critical component in a broad range of applications spanning catalysis, sensing, optics, and electronics. The nucleation and growth mechanisms involved during their synthesis are known to be crucial for controlling their final performance. Macromolecules can display sequence definition, inherent chirality, metal ion targeting moieties, and can also form self-assemblies, affording them the ability to not only stabilize but also precisely control the synthesis and organization of nanoparticles for an intended application. Herein, we report the recent trends in inorganic nanoparticle synthesis mediated by peptides, peptoids, DNA, other biopolymers, and synthetic polymers. Important design parameters and future trends are also discussed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding 基于二维材料的墨水,用于开发电磁干扰 (EMI) 屏蔽的元结构
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1557/s43579-024-00639-z
Bishakha Ray, R. Siyad, Suwarna Datar

2-D transition metal-chalcogenides (TMCs) are lucrative as frequency selective absorbers (FSAs) because of strong electronic polarization and enhanced dielectric loss. In the present work we have developed inks made of 2-D TMCs such as NiSe2, CoSe2 and used them to develop metastructures having high reflection loss. The structures have conductivity peaks depending on concentration of the 2D structure in the paint. It is observed that the absorption bandwidth and frequency seem to depend on the composition of 2D TMC along with the structures made. This provides an additional method to modulate the properties of FSA.

Graphical Abstract

二维过渡金属钙钛矿(TMC)具有很强的电子极化性和更高的介电损耗,因此作为频率选择性吸收体(FSA)具有很高的利润。在本研究中,我们开发了由 NiSe2、CoSe2 等二维过渡金属钙钛矿制成的油墨,并利用它们开发了具有高反射损耗的转移结构。这些结构的电导率峰值取决于涂料中二维结构的浓度。据观察,吸收带宽和频率似乎取决于二维 TMC 的成分和所制作的结构。这为调节 FSA 性能提供了一种新方法。
{"title":"2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding","authors":"Bishakha Ray, R. Siyad, Suwarna Datar","doi":"10.1557/s43579-024-00639-z","DOIUrl":"https://doi.org/10.1557/s43579-024-00639-z","url":null,"abstract":"<p>2-D transition metal-chalcogenides (TMCs) are lucrative as frequency selective absorbers (FSAs) because of strong electronic polarization and enhanced dielectric loss. In the present work we have developed inks made of 2-D TMCs such as NiSe<sub>2</sub>, CoSe<sub>2</sub> and used them to develop metastructures having high reflection loss. The structures have conductivity peaks depending on concentration of the 2D structure in the paint. It is observed that the absorption bandwidth and frequency seem to depend on the composition of 2D TMC along with the structures made. This provides an additional method to modulate the properties of FSA.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling 通过实验和建模了解硅和钛酸钡纳米复合材料的表面和界面
IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1557/s43579-024-00638-0
Avery Pritchard, Heather Fuentes, Jessica Santosa, Madison Gonzalez, Josiah Garan, Vanessa Bartling, Katrina Nelson, Albert Dato, Todd Monson, Renee Van Ginhoven

Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectric constant. Decreasing the BTO particle size was shown to increase the dielectric constant of the perovskite, which is an intriguing but contested result. We investigated this result by fabricating silicone-matrix nanocomposite specimens containing BTO particles of decreasing diameter. Furthermore, density functional theory modeling was used to understand the interactions at the BTO particle surface. Combining results from experiments and modeling indicated that polymer type, particle surface interactions, and particle surface structure can influence the dielectric properties of polymer-matrix nanocomposites containing BTO.

Graphical abstract

钛酸钡(BTO)是一种铁电包晶石,因其介电常数高而被用于电子和储能系统。研究表明,减小 BTO 的粒径可增加该包晶石的介电常数,这是一个令人感兴趣但又有争议的结果。我们通过制作含有直径逐渐减小的 BTO 颗粒的硅基质纳米复合材料试样来研究这一结果。此外,我们还利用密度泛函理论建模来了解 BTO 粒子表面的相互作用。结合实验和建模的结果表明,聚合物类型、颗粒表面相互作用和颗粒表面结构会影响含有 BTO 的聚合物-基质纳米复合材料的介电性能。
{"title":"Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling","authors":"Avery Pritchard, Heather Fuentes, Jessica Santosa, Madison Gonzalez, Josiah Garan, Vanessa Bartling, Katrina Nelson, Albert Dato, Todd Monson, Renee Van Ginhoven","doi":"10.1557/s43579-024-00638-0","DOIUrl":"https://doi.org/10.1557/s43579-024-00638-0","url":null,"abstract":"<p>Barium titanate (BTO) is a ferroelectric perovskite used in electronics and energy storage systems because of its high dielectric constant. Decreasing the BTO particle size was shown to increase the dielectric constant of the perovskite, which is an intriguing but contested result. We investigated this result by fabricating silicone-matrix nanocomposite specimens containing BTO particles of decreasing diameter. Furthermore, density functional theory modeling was used to understand the interactions at the BTO particle surface. Combining results from experiments and modeling indicated that polymer type, particle surface interactions, and particle surface structure can influence the dielectric properties of polymer-matrix nanocomposites containing BTO.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"94 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
MRS Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1