利用深度迁移学习门控递归单元从监控摄像头检测暴力人流

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-03-14 DOI:10.4218/etrij.2023-0222
Elly Matul Imah, Riskyana Dewi Intan Puspitasari
{"title":"利用深度迁移学习门控递归单元从监控摄像头检测暴力人流","authors":"Elly Matul Imah,&nbsp;Riskyana Dewi Intan Puspitasari","doi":"10.4218/etrij.2023-0222","DOIUrl":null,"url":null,"abstract":"<p>Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"46 4","pages":"671-682"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0222","citationCount":"0","resultStr":"{\"title\":\"Violent crowd flow detection from surveillance cameras using deep transfer learning–gated recurrent unit\",\"authors\":\"Elly Matul Imah,&nbsp;Riskyana Dewi Intan Puspitasari\",\"doi\":\"10.4218/etrij.2023-0222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"46 4\",\"pages\":\"671-682\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2023-0222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0222\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0222","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

暴力可能发生在任何地方,甚至在人群密集的地方。因此,为了公共安全,有必要对人类活动进行监控。监控摄像头可以监控周围的活动,但需要人工协助才能持续监控每一起事件。需要对暴力事件进行自动检测,以便早期预警和快速反应。然而,由于视频分辨率低和存在盲点,这种自动化仍具有挑战性。本文使用 ResNet50v2 和门控递归单元 (GRU) 算法检测电影、曲棍球和人群视频数据集中的暴力行为。使用 ResNet50V2 的预训练模型从视频的每个帧序列中提取空间特征,然后使用 GRU 架构上的最优训练模型对其进行分类。然后将实验结果与小波特征提取方法和分类模型(如卷积神经网络和长短期记忆)进行比较。实验结果表明,ResNet50V2 和 GRU 的组合具有很强的鲁棒性,在准确率、召回率、精确度和 F1 分数方面都达到了最佳性能。使用 ResNet50V2 进行特征提取可以提高模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Violent crowd flow detection from surveillance cameras using deep transfer learning–gated recurrent unit

Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1