废钢预热容器模型中填料结构的不均匀性与流体渗透性之间的关系

IF 1.6 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Isij International Pub Date : 2024-03-18 DOI:10.2355/isijinternational.isijint-2023-458
Manabu Tange, Haruki Fujii, Haruto Fujizoe, Yasuo Kishimoto, Arihiro Matsunaga, Yoshihiro Miwa, Koichi Tsutsumi
{"title":"废钢预热容器模型中填料结构的不均匀性与流体渗透性之间的关系","authors":"Manabu Tange, Haruki Fujii, Haruto Fujizoe, Yasuo Kishimoto, Arihiro Matsunaga, Yoshihiro Miwa, Koichi Tsutsumi","doi":"10.2355/isijinternational.isijint-2023-458","DOIUrl":null,"url":null,"abstract":"</p><p>Recycled scrap is used as a raw material in an electric arc furnace (EAF). Certain EAF systems preheat the scrap using its exhaust gas to save energy. However, the actual operations cannot recover sufficient thermal energy of gas owing to non-uniform flow distribution such as blow-out and stagnation to cause the portion that is not melted. This study investigated the relationship between packed structure and gas permeability in a tank filled with random- and multiple-shaped solids. Visualization and flow measurement experiments were conducted. The packing structure was measured using laser-induced fluorescence by scanning a laser sheet through the tank to measure the three-dimensional distribution of the packed structure. The flow velocity distribution was measured using particle image velocimetry by preparing multiple directions of the laser sheet with respect to the water tank and reconstructing a three-dimensional three-component velocity distribution. Under high packing ratio, the flow structure was obstructed by the packing material, resulting in stagnation areas with low flow velocity. In contrast, at low packing ratio, the stagnation area was smaller, and the global flow field was stable. Furthermore, histograms of the flow velocity distributions suggested that stagnation occurred under high packing ratio conditions, while a global flow field occurred at low packing ratios. These results are applicable in the design of preheating equipment, such as exhaust gas recycling, preheating furnace, or clamshell. Thus, this study provides valuable insights into flow nonuniformity and the design of preheating equipment to improve operational efficiency and safety.</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship between the nonuniformity of packed structure and fluid permeability in a model scrap preheating vessel\",\"authors\":\"Manabu Tange, Haruki Fujii, Haruto Fujizoe, Yasuo Kishimoto, Arihiro Matsunaga, Yoshihiro Miwa, Koichi Tsutsumi\",\"doi\":\"10.2355/isijinternational.isijint-2023-458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Recycled scrap is used as a raw material in an electric arc furnace (EAF). Certain EAF systems preheat the scrap using its exhaust gas to save energy. However, the actual operations cannot recover sufficient thermal energy of gas owing to non-uniform flow distribution such as blow-out and stagnation to cause the portion that is not melted. This study investigated the relationship between packed structure and gas permeability in a tank filled with random- and multiple-shaped solids. Visualization and flow measurement experiments were conducted. The packing structure was measured using laser-induced fluorescence by scanning a laser sheet through the tank to measure the three-dimensional distribution of the packed structure. The flow velocity distribution was measured using particle image velocimetry by preparing multiple directions of the laser sheet with respect to the water tank and reconstructing a three-dimensional three-component velocity distribution. Under high packing ratio, the flow structure was obstructed by the packing material, resulting in stagnation areas with low flow velocity. In contrast, at low packing ratio, the stagnation area was smaller, and the global flow field was stable. Furthermore, histograms of the flow velocity distributions suggested that stagnation occurred under high packing ratio conditions, while a global flow field occurred at low packing ratios. These results are applicable in the design of preheating equipment, such as exhaust gas recycling, preheating furnace, or clamshell. Thus, this study provides valuable insights into flow nonuniformity and the design of preheating equipment to improve operational efficiency and safety.</p>\\n<p></p>\",\"PeriodicalId\":14619,\"journal\":{\"name\":\"Isij International\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Isij International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2355/isijinternational.isijint-2023-458\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2023-458","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

回收的废料被用作电弧炉(EAF)的原料。某些电弧炉系统使用废气预热废料,以节省能源。然而,在实际操作中,由于气流分布不均匀,如吹出和停滞,导致未熔化的部分无法回收足够的气体热能。本研究调查了充满随机和多重形状固体的储罐中填料结构与气体渗透性之间的关系。进行了可视化和流量测量实验。利用激光诱导荧光测量了填料结构,方法是用激光片扫描罐体,测量填料结构的三维分布。通过制备激光片相对于水箱的多个方向并重建三维三分量速度分布,使用粒子图像测速仪测量了流速分布。在高填料比条件下,流动结构受到填料的阻碍,形成流速较低的停滞区。相反,在低填料比条件下,停滞区域较小,整体流场稳定。此外,流速分布直方图表明,在高填料比条件下会出现停滞,而在低填料比条件下会出现整体流场。这些结果适用于预热设备的设计,如废气回收、预热炉或蛤壳。因此,这项研究对流动不均匀性和预热设备的设计提供了有价值的见解,以提高运行效率和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relationship between the nonuniformity of packed structure and fluid permeability in a model scrap preheating vessel

Recycled scrap is used as a raw material in an electric arc furnace (EAF). Certain EAF systems preheat the scrap using its exhaust gas to save energy. However, the actual operations cannot recover sufficient thermal energy of gas owing to non-uniform flow distribution such as blow-out and stagnation to cause the portion that is not melted. This study investigated the relationship between packed structure and gas permeability in a tank filled with random- and multiple-shaped solids. Visualization and flow measurement experiments were conducted. The packing structure was measured using laser-induced fluorescence by scanning a laser sheet through the tank to measure the three-dimensional distribution of the packed structure. The flow velocity distribution was measured using particle image velocimetry by preparing multiple directions of the laser sheet with respect to the water tank and reconstructing a three-dimensional three-component velocity distribution. Under high packing ratio, the flow structure was obstructed by the packing material, resulting in stagnation areas with low flow velocity. In contrast, at low packing ratio, the stagnation area was smaller, and the global flow field was stable. Furthermore, histograms of the flow velocity distributions suggested that stagnation occurred under high packing ratio conditions, while a global flow field occurred at low packing ratios. These results are applicable in the design of preheating equipment, such as exhaust gas recycling, preheating furnace, or clamshell. Thus, this study provides valuable insights into flow nonuniformity and the design of preheating equipment to improve operational efficiency and safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Isij International
Isij International 工程技术-冶金工程
CiteScore
3.40
自引率
16.70%
发文量
268
审稿时长
2.6 months
期刊介绍: The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
期刊最新文献
Ductility loss of a metastable austenitic stainless steel and its TIG weldment due to hydrogen embrittlement at low temperatures considering the effect of pre-strain at 4K Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force Ductile Fracture Prediction During Metal Forming Using an Ellipsoidal Void Model and Some Other Models Atmospheric Corrosion Behavior of Ni-Advanced Weathering Steels in High-Chloride Environment: Effect of Ni on Corrosion Morphology Arc-plasma-assisted laser-induced breakdown spectroscopy (AP-LIBS): A Study on Signal Enhancement and Spatiotemporal Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1