从 "嗯 "到 "是":人类对话中信息流的产生、预测和调节

Claire Augusta Bergey, Simon DeDeo
{"title":"从 \"嗯 \"到 \"是\":人类对话中信息流的产生、预测和调节","authors":"Claire Augusta Bergey, Simon DeDeo","doi":"arxiv-2403.08890","DOIUrl":null,"url":null,"abstract":"Conversation demands attention. Speakers must call words to mind, listeners\nmust make sense of them, and both together must negotiate this flow of\ninformation, all in fractions of a second. We used large language models to\nstudy how this works in a large-scale dataset of English-language conversation,\nthe CANDOR corpus. We provide a new estimate of the information density of\nunstructured conversation, of approximately 13 bits/second, and find\nsignificant effects associated with the cognitive load of both retrieving, and\npresenting, that information. We also reveal a role for backchannels -- the\nbrief yeahs, uh-huhs, and mhmms that listeners provide -- in regulating the\nproduction of novelty: the lead-up to a backchannel is associated with\ndeclining information rate, while speech downstream rebounds to previous rates.\nOur results provide new insights into long-standing theories of how we respond\nto fluctuating demands on cognitive resources, and how we negotiate those\ndemands in partnership with others.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From \\\"um\\\" to \\\"yeah\\\": Producing, predicting, and regulating information flow in human conversation\",\"authors\":\"Claire Augusta Bergey, Simon DeDeo\",\"doi\":\"arxiv-2403.08890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversation demands attention. Speakers must call words to mind, listeners\\nmust make sense of them, and both together must negotiate this flow of\\ninformation, all in fractions of a second. We used large language models to\\nstudy how this works in a large-scale dataset of English-language conversation,\\nthe CANDOR corpus. We provide a new estimate of the information density of\\nunstructured conversation, of approximately 13 bits/second, and find\\nsignificant effects associated with the cognitive load of both retrieving, and\\npresenting, that information. We also reveal a role for backchannels -- the\\nbrief yeahs, uh-huhs, and mhmms that listeners provide -- in regulating the\\nproduction of novelty: the lead-up to a backchannel is associated with\\ndeclining information rate, while speech downstream rebounds to previous rates.\\nOur results provide new insights into long-standing theories of how we respond\\nto fluctuating demands on cognitive resources, and how we negotiate those\\ndemands in partnership with others.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.08890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.08890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对话需要注意力。说话者必须把单词记在脑子里,听话者必须理解这些单词,而且双方必须在几分之一秒的时间内共同协商信息流。我们使用大型语言模型,在大规模英语会话数据集(CANDOR 语料库)中研究了这一过程是如何进行的。我们对结构化会话的信息密度进行了新的估算,大约为 13 比特/秒,并发现了与检索和呈现这些信息的认知负荷相关的显著效果。我们还揭示了后信道--听者提供的简短的 "是"、"嗯 "和 "嗯"--在调节新奇感产生中的作用:后信道的前奏与信息速率下降有关,而下游语音则会回升到以前的速率。我们的研究结果为我们如何应对认知资源的波动需求,以及我们如何与他人合作协商这些需求的长期理论提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation
Conversation demands attention. Speakers must call words to mind, listeners must make sense of them, and both together must negotiate this flow of information, all in fractions of a second. We used large language models to study how this works in a large-scale dataset of English-language conversation, the CANDOR corpus. We provide a new estimate of the information density of unstructured conversation, of approximately 13 bits/second, and find significant effects associated with the cognitive load of both retrieving, and presenting, that information. We also reveal a role for backchannels -- the brief yeahs, uh-huhs, and mhmms that listeners provide -- in regulating the production of novelty: the lead-up to a backchannel is associated with declining information rate, while speech downstream rebounds to previous rates. Our results provide new insights into long-standing theories of how we respond to fluctuating demands on cognitive resources, and how we negotiate those demands in partnership with others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1