{"title":"基于粉末的增材制造中薄内聚颗粒层的结构波动","authors":"Sudeshna Roy, Hongyi Xiao, Vasileios Angelidakis, Thorsten Pöschel","doi":"10.1007/s10035-024-01410-w","DOIUrl":null,"url":null,"abstract":"<div><p>Producing dense and homogeneous powder layers with smooth free surface is challenging in additive manufacturing, as interparticle cohesion can strongly affect the powder packing structure and therefore influence the quality of the end product. We use the Discrete Element Method to simulate the spreading process of spherical powders and examine how cohesion influences the characteristics of the packing structure with a focus on the fluctuation of the local morphology. As cohesion increases, the overall packing density decreases, and the free surface roughness increases, which is calculated from digitized surface height distributions. Local structural fluctuations for both quantities are examined through the local packing anisotropy on the particle scale, obtained from Voronoï tessellation. The distributions of these particle-level metrics quantify the increasingly heterogeneous packing structure with clustering and changing surface morphology.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-024-01410-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural fluctuations in thin cohesive particle layers in powder-based additive manufacturing\",\"authors\":\"Sudeshna Roy, Hongyi Xiao, Vasileios Angelidakis, Thorsten Pöschel\",\"doi\":\"10.1007/s10035-024-01410-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Producing dense and homogeneous powder layers with smooth free surface is challenging in additive manufacturing, as interparticle cohesion can strongly affect the powder packing structure and therefore influence the quality of the end product. We use the Discrete Element Method to simulate the spreading process of spherical powders and examine how cohesion influences the characteristics of the packing structure with a focus on the fluctuation of the local morphology. As cohesion increases, the overall packing density decreases, and the free surface roughness increases, which is calculated from digitized surface height distributions. Local structural fluctuations for both quantities are examined through the local packing anisotropy on the particle scale, obtained from Voronoï tessellation. The distributions of these particle-level metrics quantify the increasingly heterogeneous packing structure with clustering and changing surface morphology.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10035-024-01410-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01410-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01410-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural fluctuations in thin cohesive particle layers in powder-based additive manufacturing
Producing dense and homogeneous powder layers with smooth free surface is challenging in additive manufacturing, as interparticle cohesion can strongly affect the powder packing structure and therefore influence the quality of the end product. We use the Discrete Element Method to simulate the spreading process of spherical powders and examine how cohesion influences the characteristics of the packing structure with a focus on the fluctuation of the local morphology. As cohesion increases, the overall packing density decreases, and the free surface roughness increases, which is calculated from digitized surface height distributions. Local structural fluctuations for both quantities are examined through the local packing anisotropy on the particle scale, obtained from Voronoï tessellation. The distributions of these particle-level metrics quantify the increasingly heterogeneous packing structure with clustering and changing surface morphology.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.