Daniel Suarez, Camilo Gomez, Andrés L. Medaglia, Raha Akhavan-Tabatabaei, Sthefania Grajales
{"title":"灾害风险管理综合决策支持:帮助野火管理中的备灾和救灾决策","authors":"Daniel Suarez, Camilo Gomez, Andrés L. Medaglia, Raha Akhavan-Tabatabaei, Sthefania Grajales","doi":"10.1287/isre.2022.0118","DOIUrl":null,"url":null,"abstract":"A central challenge in disaster risk management (DRM) is that there are key dependencies and uncertainty between the decisions made at the mitigation, preparedness, response, and recovery stages. Decision support systems for disaster management require information systems that allow timely and reliable integration of data sources from different domains, including information on hazards and vulnerabilities for risk analysis, as well as organizational and logistical information for decision analysis. We propose an analytics-centered framework that integrates predictive and prescriptive models responding to unique characteristics of DRM. The framework relies on probabilistic risk assessment and uses optimization-based simulation of the response phase as a means to inform decisions at the preparedness stage. This paper presents a case study regarding the analysis of preparedness and response decisions for wildfire control in Uruguay. Numerical results illustrate insights from the risk-informed analyses. For instance, slight reductions in the preparedness budget can lead to disproportionate losses during the response stage, whereas slight increases have little effect unless explicitly directed to control high-consequence scenarios. Motivated by a real-world problem, this case study emphasizes the challenges for integrated information systems that enable the potential of analytical decision support frameworks for DRM.","PeriodicalId":48411,"journal":{"name":"Information Systems Research","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Decision Support for Disaster Risk Management: Aiding Preparedness and Response Decisions in Wildfire Management\",\"authors\":\"Daniel Suarez, Camilo Gomez, Andrés L. Medaglia, Raha Akhavan-Tabatabaei, Sthefania Grajales\",\"doi\":\"10.1287/isre.2022.0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central challenge in disaster risk management (DRM) is that there are key dependencies and uncertainty between the decisions made at the mitigation, preparedness, response, and recovery stages. Decision support systems for disaster management require information systems that allow timely and reliable integration of data sources from different domains, including information on hazards and vulnerabilities for risk analysis, as well as organizational and logistical information for decision analysis. We propose an analytics-centered framework that integrates predictive and prescriptive models responding to unique characteristics of DRM. The framework relies on probabilistic risk assessment and uses optimization-based simulation of the response phase as a means to inform decisions at the preparedness stage. This paper presents a case study regarding the analysis of preparedness and response decisions for wildfire control in Uruguay. Numerical results illustrate insights from the risk-informed analyses. For instance, slight reductions in the preparedness budget can lead to disproportionate losses during the response stage, whereas slight increases have little effect unless explicitly directed to control high-consequence scenarios. Motivated by a real-world problem, this case study emphasizes the challenges for integrated information systems that enable the potential of analytical decision support frameworks for DRM.\",\"PeriodicalId\":48411,\"journal\":{\"name\":\"Information Systems Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/isre.2022.0118\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/isre.2022.0118","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Integrated Decision Support for Disaster Risk Management: Aiding Preparedness and Response Decisions in Wildfire Management
A central challenge in disaster risk management (DRM) is that there are key dependencies and uncertainty between the decisions made at the mitigation, preparedness, response, and recovery stages. Decision support systems for disaster management require information systems that allow timely and reliable integration of data sources from different domains, including information on hazards and vulnerabilities for risk analysis, as well as organizational and logistical information for decision analysis. We propose an analytics-centered framework that integrates predictive and prescriptive models responding to unique characteristics of DRM. The framework relies on probabilistic risk assessment and uses optimization-based simulation of the response phase as a means to inform decisions at the preparedness stage. This paper presents a case study regarding the analysis of preparedness and response decisions for wildfire control in Uruguay. Numerical results illustrate insights from the risk-informed analyses. For instance, slight reductions in the preparedness budget can lead to disproportionate losses during the response stage, whereas slight increases have little effect unless explicitly directed to control high-consequence scenarios. Motivated by a real-world problem, this case study emphasizes the challenges for integrated information systems that enable the potential of analytical decision support frameworks for DRM.
期刊介绍:
ISR (Information Systems Research) is a journal of INFORMS, the Institute for Operations Research and the Management Sciences. Information Systems Research is a leading international journal of theory, research, and intellectual development, focused on information systems in organizations, institutions, the economy, and society.