一种收敛速度快的稀疏图信号重构高效算法

IF 1.9 4区 工程技术 Q2 Engineering EURASIP Journal on Advances in Signal Processing Pub Date : 2024-03-15 DOI:10.1186/s13634-024-01133-3
{"title":"一种收敛速度快的稀疏图信号重构高效算法","authors":"","doi":"10.1186/s13634-024-01133-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we consider the graph signals are sparse in the graph Fourier domain and propose an iterative threshold compressed sensing reconstruction (ITCSR) algorithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed ITCSR algorithm derives from the well-known compressed sensing by considering a threshold for sparsity-promoting reconstruction of the underlying graph signals. The proposed ITCSR algorithm enhances the performance of sparse graph signal reconstruction by introducing a threshold function to determine a suitable threshold. Furthermore, we demonstrate that the suitable parameters for the threshold can be automatically determined by leveraging the sparrow search algorithm. Moreover, we analytically prove the convergence property of the proposed ITCSR algorithm. In the experimental, numerical tests with synthetic as well as 3D point cloud data demonstrate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient algorithm with fast convergence rate for sparse graph signal reconstruction\",\"authors\":\"\",\"doi\":\"10.1186/s13634-024-01133-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we consider the graph signals are sparse in the graph Fourier domain and propose an iterative threshold compressed sensing reconstruction (ITCSR) algorithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed ITCSR algorithm derives from the well-known compressed sensing by considering a threshold for sparsity-promoting reconstruction of the underlying graph signals. The proposed ITCSR algorithm enhances the performance of sparse graph signal reconstruction by introducing a threshold function to determine a suitable threshold. Furthermore, we demonstrate that the suitable parameters for the threshold can be automatically determined by leveraging the sparrow search algorithm. Moreover, we analytically prove the convergence property of the proposed ITCSR algorithm. In the experimental, numerical tests with synthetic as well as 3D point cloud data demonstrate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01133-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01133-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文认为图傅里叶域中的图信号是稀疏的,并提出了一种迭代阈值压缩传感重建(ITCSR)算法来重建图傅里叶域中的稀疏图信号。所提出的 ITCSR 算法源于著名的压缩传感,它考虑了一个阈值来促进底层图信号的稀疏性重建。拟议的 ITCSR 算法通过引入阈值函数来确定合适的阈值,从而提高了稀疏图信号重建的性能。此外,我们还证明了利用麻雀搜索算法可以自动确定合适的阈值参数。此外,我们还分析证明了所提出的 ITCSR 算法的收敛特性。在实验中,使用合成数据和三维点云数据进行的数值测试证明了所提出的 ITCSR 算法相对于基准算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient algorithm with fast convergence rate for sparse graph signal reconstruction

Abstract

In this paper, we consider the graph signals are sparse in the graph Fourier domain and propose an iterative threshold compressed sensing reconstruction (ITCSR) algorithm to reconstruct sparse graph signals in the graph Fourier domain. The proposed ITCSR algorithm derives from the well-known compressed sensing by considering a threshold for sparsity-promoting reconstruction of the underlying graph signals. The proposed ITCSR algorithm enhances the performance of sparse graph signal reconstruction by introducing a threshold function to determine a suitable threshold. Furthermore, we demonstrate that the suitable parameters for the threshold can be automatically determined by leveraging the sparrow search algorithm. Moreover, we analytically prove the convergence property of the proposed ITCSR algorithm. In the experimental, numerical tests with synthetic as well as 3D point cloud data demonstrate the merits of the proposed ITCSR algorithm relative to the baseline algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURASIP Journal on Advances in Signal Processing
EURASIP Journal on Advances in Signal Processing 工程技术-工程:电子与电气
CiteScore
3.50
自引率
10.50%
发文量
109
审稿时长
2.6 months
期刊介绍: The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.
期刊最新文献
Double-layer data-hiding mechanism for ECG signals Maximum radial pattern matching for minimum star map identification Optimized power and speed of Split-Radix, Radix-4 and Radix-2 FFT structures Performance analysis of unconstrained partitioned-block frequency-domain adaptive filters in under-modeling scenarios Maximum length binary sequences and spectral power distribution of periodic signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1