{"title":"通过电热爆炸快速合成四方结构的 Cu2Sb 相","authors":"A. Hafs, T. Hafs, D. Berdjane, L. Yandjah","doi":"10.3103/S1061386224010035","DOIUrl":null,"url":null,"abstract":"<p>In our study, we aimed to synthesize the Cu<sub>2</sub>Sb phase with a tetragonal structure. We achieved this by subjecting compacts (2Cu + Sb) to electrothermal explosion (ETE) with a high current density of 500 Å. To analyze the constituent phases of the alloy composite, we employed X-ray diffraction analysis with the MAUD program, which utilizes the Rietveld method, as well as scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. Furthermore, we investigated the mechanical properties through Vickers indentation and compression techniques.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"33 1","pages":"67 - 74"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapidly Synthesizing Cu2Sb Phase of Tetragonal Structure by Electrothermal Explosion\",\"authors\":\"A. Hafs, T. Hafs, D. Berdjane, L. Yandjah\",\"doi\":\"10.3103/S1061386224010035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In our study, we aimed to synthesize the Cu<sub>2</sub>Sb phase with a tetragonal structure. We achieved this by subjecting compacts (2Cu + Sb) to electrothermal explosion (ETE) with a high current density of 500 Å. To analyze the constituent phases of the alloy composite, we employed X-ray diffraction analysis with the MAUD program, which utilizes the Rietveld method, as well as scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. Furthermore, we investigated the mechanical properties through Vickers indentation and compression techniques.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"33 1\",\"pages\":\"67 - 74\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386224010035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386224010035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要 在我们的研究中,我们的目标是合成具有四方结构的 Cu2Sb 相。为了分析合金复合材料的组成相,我们采用了利用里特维尔德法的 MAUD 程序进行的 X 射线衍射分析,以及扫描电子显微镜(SEM)和能量色散 X 射线(EDX)技术。此外,我们还通过维氏压痕和压缩技术研究了其机械性能。
Rapidly Synthesizing Cu2Sb Phase of Tetragonal Structure by Electrothermal Explosion
In our study, we aimed to synthesize the Cu2Sb phase with a tetragonal structure. We achieved this by subjecting compacts (2Cu + Sb) to electrothermal explosion (ETE) with a high current density of 500 Å. To analyze the constituent phases of the alloy composite, we employed X-ray diffraction analysis with the MAUD program, which utilizes the Rietveld method, as well as scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. Furthermore, we investigated the mechanical properties through Vickers indentation and compression techniques.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.