{"title":"关于超立方体的图兰数","authors":"Oliver Janzer, Benny Sudakov","doi":"10.1017/fms.2024.27","DOIUrl":null,"url":null,"abstract":"In 1964, Erdős proposed the problem of estimating the Turán number of the <jats:italic>d</jats:italic>-dimensional hypercube <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline1.png\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline2.png\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a bipartite graph with maximum degree <jats:italic>d</jats:italic>, it follows from results of Füredi and Alon, Krivelevich, Sudakov that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline3.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A recent general result of Sudakov and Tomon implies the slightly stronger bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline4.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain the first power-improvement for this old problem by showing that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline5.png\" /> <jats:tex-math> $\\mathrm {ex}(n,Q_d)=O_d\\left (n^{2-\\frac {1}{d-1}+\\frac {1}{(d-1)2^{d-1}}}\\right )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any <jats:italic>n</jats:italic>-vertex, properly edge-coloured graph without a rainbow cycle has at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline6.png\" /> <jats:tex-math> $O(n(\\log n)^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges, improving the previous best bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline7.png\" /> <jats:tex-math> $n(\\log n)^{2+o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by Tomon. Furthermore, we show that any properly edge-coloured <jats:italic>n</jats:italic>-vertex graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000276_inline8.png\" /> <jats:tex-math> $\\omega (n\\log n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Turán number of the hypercube\",\"authors\":\"Oliver Janzer, Benny Sudakov\",\"doi\":\"10.1017/fms.2024.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1964, Erdős proposed the problem of estimating the Turán number of the <jats:italic>d</jats:italic>-dimensional hypercube <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline1.png\\\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Since <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline2.png\\\" /> <jats:tex-math> $Q_d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a bipartite graph with maximum degree <jats:italic>d</jats:italic>, it follows from results of Füredi and Alon, Krivelevich, Sudakov that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline3.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. A recent general result of Sudakov and Tomon implies the slightly stronger bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline4.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain the first power-improvement for this old problem by showing that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline5.png\\\" /> <jats:tex-math> $\\\\mathrm {ex}(n,Q_d)=O_d\\\\left (n^{2-\\\\frac {1}{d-1}+\\\\frac {1}{(d-1)2^{d-1}}}\\\\right )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any <jats:italic>n</jats:italic>-vertex, properly edge-coloured graph without a rainbow cycle has at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline6.png\\\" /> <jats:tex-math> $O(n(\\\\log n)^2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges, improving the previous best bound of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline7.png\\\" /> <jats:tex-math> $n(\\\\log n)^{2+o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by Tomon. Furthermore, we show that any properly edge-coloured <jats:italic>n</jats:italic>-vertex graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000276_inline8.png\\\" /> <jats:tex-math> $\\\\omega (n\\\\log n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.27\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.27","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
1964 年,厄尔多斯提出了估计 d 维超立方体 $Q_d$ 的图兰数问题。由于 $Q_d$ 是最大阶数为 d 的双方形图,根据 Füredi 和 Alon、Krivelevich、Sudakov 的结果,可以得出 $mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ 。Sudakov 和 Tomon 最近的一个一般性结果暗示了稍强的约束 $\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ 。通过证明 $\mathrm {ex}(n,Q_d)=O_d\left (n^{2-\frac {1}{d-1}+\frac {1}{(d-1)2^{d-1}}}\right )$ ,我们得到了这个老问题的第一个幂改进。这回答了刘博士的一个问题。此外,我们的技术对于比立方体更大的图类也有能力改进。我们用类似的方法证明了任何 n 个顶点、适当边缘着色、没有彩虹循环的图最多有 $O(n(\log n)^2)$ 条边,这改进了托蒙之前的最佳边界 $n(\log n)^{2+o(1)}$。此外,我们还证明了任何具有 $\omega (n\log n)$ 边的适当边色 n 顶点图都包含一个几乎是彩虹的循环:也就是说,其中几乎所有的边都有唯一的颜色。后一个结果是严密的。
In 1964, Erdős proposed the problem of estimating the Turán number of the d-dimensional hypercube $Q_d$ . Since $Q_d$ is a bipartite graph with maximum degree d, it follows from results of Füredi and Alon, Krivelevich, Sudakov that $\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$ . A recent general result of Sudakov and Tomon implies the slightly stronger bound $\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$ . We obtain the first power-improvement for this old problem by showing that $\mathrm {ex}(n,Q_d)=O_d\left (n^{2-\frac {1}{d-1}+\frac {1}{(d-1)2^{d-1}}}\right )$ . This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes. We use a similar method to prove that any n-vertex, properly edge-coloured graph without a rainbow cycle has at most $O(n(\log n)^2)$ edges, improving the previous best bound of $n(\log n)^{2+o(1)}$ by Tomon. Furthermore, we show that any properly edge-coloured n-vertex graph with $\omega (n\log n)$ edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.
期刊介绍:
Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.