G. N. Antonovskaya, Ya. V. Konechnaya, I. M. Basakina
{"title":"大洋中脊对新谢姆利亚群岛地震的影响","authors":"G. N. Antonovskaya, Ya. V. Konechnaya, I. M. Basakina","doi":"10.1134/s0016852123060031","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The influence of the mid-oceanic ridges (MORs), including the Gakkel Ridge and the Knipovich Ridge–Lena Trough system on the seismicity of the Novaya Zemlya archipelago area for 1980‒2022 is considered. For each geological element under consideration, seismic catalogs with a single unified magnitude mb<sub><i>ISC</i></sub> for an equivalent comparison of information were compiled, the annual seismic energy was calculated, and plots of its distribution by year were constructed. Analytical modeling based on the Elsasser model describing the process of local stress transfer in a rigid elastic lithosphere underlain by a viscous asthenosphere was performed, and quantitative calculations of the disturbance propagations from MORs were made. The time intervals through which disturbances from MORs reach the Novaya Zemlya archipelago are 1‒2 years for the Knipovich Ridge–Lena Trough system and 3‒5 years for the Gakkel Ridge. The maximum joint contribution to the level of seismic activity of various geological and tectonic structures of the MORs can reach 40‒60% of the applied disturbance, which is a sufficient condition for the influence on seismicity of the Novaya Zemlya orogen. The most geodynamically active structures and zones of tectonic stress concentration were identified.</p>","PeriodicalId":55097,"journal":{"name":"Geotectonics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Mid-Oceanic Ridges on the Seismicity of the Novaya Zemlya Archipelago\",\"authors\":\"G. N. Antonovskaya, Ya. V. Konechnaya, I. M. Basakina\",\"doi\":\"10.1134/s0016852123060031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The influence of the mid-oceanic ridges (MORs), including the Gakkel Ridge and the Knipovich Ridge–Lena Trough system on the seismicity of the Novaya Zemlya archipelago area for 1980‒2022 is considered. For each geological element under consideration, seismic catalogs with a single unified magnitude mb<sub><i>ISC</i></sub> for an equivalent comparison of information were compiled, the annual seismic energy was calculated, and plots of its distribution by year were constructed. Analytical modeling based on the Elsasser model describing the process of local stress transfer in a rigid elastic lithosphere underlain by a viscous asthenosphere was performed, and quantitative calculations of the disturbance propagations from MORs were made. The time intervals through which disturbances from MORs reach the Novaya Zemlya archipelago are 1‒2 years for the Knipovich Ridge–Lena Trough system and 3‒5 years for the Gakkel Ridge. The maximum joint contribution to the level of seismic activity of various geological and tectonic structures of the MORs can reach 40‒60% of the applied disturbance, which is a sufficient condition for the influence on seismicity of the Novaya Zemlya orogen. The most geodynamically active structures and zones of tectonic stress concentration were identified.</p>\",\"PeriodicalId\":55097,\"journal\":{\"name\":\"Geotectonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotectonics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0016852123060031\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0016852123060031","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Influence of Mid-Oceanic Ridges on the Seismicity of the Novaya Zemlya Archipelago
Abstract
The influence of the mid-oceanic ridges (MORs), including the Gakkel Ridge and the Knipovich Ridge–Lena Trough system on the seismicity of the Novaya Zemlya archipelago area for 1980‒2022 is considered. For each geological element under consideration, seismic catalogs with a single unified magnitude mbISC for an equivalent comparison of information were compiled, the annual seismic energy was calculated, and plots of its distribution by year were constructed. Analytical modeling based on the Elsasser model describing the process of local stress transfer in a rigid elastic lithosphere underlain by a viscous asthenosphere was performed, and quantitative calculations of the disturbance propagations from MORs were made. The time intervals through which disturbances from MORs reach the Novaya Zemlya archipelago are 1‒2 years for the Knipovich Ridge–Lena Trough system and 3‒5 years for the Gakkel Ridge. The maximum joint contribution to the level of seismic activity of various geological and tectonic structures of the MORs can reach 40‒60% of the applied disturbance, which is a sufficient condition for the influence on seismicity of the Novaya Zemlya orogen. The most geodynamically active structures and zones of tectonic stress concentration were identified.
期刊介绍:
Geotectonics publishes articles on general and regional tectonics, structural geology, geodynamics, and experimental tectonics and considers the relation of tectonics to the deep structure of the earth, magmatism, metamorphism, and mineral resources.