{"title":"具有低正则势和非线性的非线性薛定谔方程时间分割方法的最佳误差边界","authors":"Weizhu Bao, Ying Ma, Chushan Wang","doi":"10.1142/s0218202524500155","DOIUrl":null,"url":null,"abstract":"<p>We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>ρ</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span><span></span>, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>:</mo><mo>=</mo><mo>|</mo><mi>ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> is the density with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span> the wave function and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>></mo><mn>0</mn></math></span><span></span> the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>></mo><mn>0</mn></math></span><span></span>, and optimal <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is obtained for <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn></math></span><span></span>. For the second-order Strang time-splitting method, optimal <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is established for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, and optimal <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>≥</mo><mn>3</mn><mo stretchy=\"false\">/</mo><mn>2</mn></math></span><span></span> (or <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi><mo>=</mo><mn>1</mn></math></span><span></span>). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called <i>regularity compensation oscillation</i> (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity\",\"authors\":\"Weizhu Bao, Ying Ma, Chushan Wang\",\"doi\":\"10.1142/s0218202524500155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>ρ</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mi>σ</mi></mrow></msup></math></span><span></span>, where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ρ</mi><mo>:</mo><mo>=</mo><mo>|</mo><mi>ψ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> is the density with <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ψ</mi></math></span><span></span> the wave function and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>></mo><mn>0</mn></math></span><span></span> the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span><span></span>-potential and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>></mo><mn>0</mn></math></span><span></span>, and optimal <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is obtained for <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>≥</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn></math></span><span></span>. For the second-order Strang time-splitting method, optimal <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-norm error bound is established for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, and optimal <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span></span>-norm error bound is proved for <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>-potential and <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>≥</mo><mn>3</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn></math></span><span></span> (or <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>σ</mi><mo>=</mo><mn>1</mn></math></span><span></span>). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called <i>regularity compensation oscillation</i> (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity
We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity , where is the density with the wave function and the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal -norm error bound is proved for -potential and , and optimal -norm error bound is obtained for -potential and . For the second-order Strang time-splitting method, optimal -norm error bound is established for -potential and , and optimal -norm error bound is proved for -potential and (or ). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called regularity compensation oscillation (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.