洞察样本的共性:探索异常子集与数据集关系的可视化框架

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Data & Knowledge Engineering Pub Date : 2024-03-12 DOI:10.1016/j.datak.2024.102299
Nikolas Stege , Michael H. Breitner
{"title":"洞察样本的共性:探索异常子集与数据集关系的可视化框架","authors":"Nikolas Stege ,&nbsp;Michael H. Breitner","doi":"10.1016/j.datak.2024.102299","DOIUrl":null,"url":null,"abstract":"<div><p>Domain experts are driven by business needs, while data analysts develop and use various algorithms, methods, and tools, but often without domain knowledge. A major challenge for companies and organizations is to integrate data analytics in business processes and workflows. We deduce an interactive process and visualization framework to enable value creating collaboration in inter- and cross-disciplinary teams. Domain experts and data analysts are both empowered to analyze and discuss results and come to well-founded insights and implications. Inspired by a typical auditing problem, we develop and apply a visualization framework to single out unusual data in general subsets for potential further investigation. Our framework is applicable to both unusual data detected manually by domain experts or by algorithms applied by data analysts. Application examples show typical interaction, collaboration, visualization, and decision support.</p></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"151 ","pages":"Article 102299"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169023X24000235/pdfft?md5=5865a6d1aaccbc08965569d170abf88f&pid=1-s2.0-S0169023X24000235-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Insights into commonalities of a sample: A visualization framework to explore unusual subset-dataset relationships\",\"authors\":\"Nikolas Stege ,&nbsp;Michael H. Breitner\",\"doi\":\"10.1016/j.datak.2024.102299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Domain experts are driven by business needs, while data analysts develop and use various algorithms, methods, and tools, but often without domain knowledge. A major challenge for companies and organizations is to integrate data analytics in business processes and workflows. We deduce an interactive process and visualization framework to enable value creating collaboration in inter- and cross-disciplinary teams. Domain experts and data analysts are both empowered to analyze and discuss results and come to well-founded insights and implications. Inspired by a typical auditing problem, we develop and apply a visualization framework to single out unusual data in general subsets for potential further investigation. Our framework is applicable to both unusual data detected manually by domain experts or by algorithms applied by data analysts. Application examples show typical interaction, collaboration, visualization, and decision support.</p></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"151 \",\"pages\":\"Article 102299\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000235/pdfft?md5=5865a6d1aaccbc08965569d170abf88f&pid=1-s2.0-S0169023X24000235-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X24000235\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24000235","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

领域专家由业务需求驱动,而数据分析师则开发和使用各种算法、方法和工具,但往往不具备领域知识。公司和组织面临的一大挑战是如何将数据分析整合到业务流程和工作流程中。我们推导出了一个交互式流程和可视化框架,以便在跨学科和跨专业团队中开展创造价值的协作。领域专家和数据分析师都有权分析和讨论结果,并得出有理有据的见解和影响。受一个典型审计问题的启发,我们开发并应用了一个可视化框架,以在一般子集中挑选出异常数据,进行潜在的进一步调查。我们的框架既适用于领域专家手动检测到的异常数据,也适用于数据分析师使用算法检测到的异常数据。应用实例展示了典型的交互、协作、可视化和决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into commonalities of a sample: A visualization framework to explore unusual subset-dataset relationships

Domain experts are driven by business needs, while data analysts develop and use various algorithms, methods, and tools, but often without domain knowledge. A major challenge for companies and organizations is to integrate data analytics in business processes and workflows. We deduce an interactive process and visualization framework to enable value creating collaboration in inter- and cross-disciplinary teams. Domain experts and data analysts are both empowered to analyze and discuss results and come to well-founded insights and implications. Inspired by a typical auditing problem, we develop and apply a visualization framework to single out unusual data in general subsets for potential further investigation. Our framework is applicable to both unusual data detected manually by domain experts or by algorithms applied by data analysts. Application examples show typical interaction, collaboration, visualization, and decision support.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
期刊最新文献
Improving multi-view ensemble learning with Round-Robin feature set partitioning White box specification of intervention policies for prescriptive process monitoring A goal-oriented document-grounded dialogue based on evidence generation Data-aware process models: From soundness checking to repair Context normalization: A new approach for the stability and improvement of neural network performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1