利用非靶向单细胞 DNA 测序对多人生物混合物进行解卷积,并准确表征和识别分离的贡献者

IF 3.2 2区 医学 Q2 GENETICS & HEREDITY Forensic Science International-Genetics Pub Date : 2024-03-13 DOI:10.1016/j.fsigen.2024.103030
Lucie Kulhankova , Eric Bindels , Manfred Kayser , Eskeatnaf Mulugeta
{"title":"利用非靶向单细胞 DNA 测序对多人生物混合物进行解卷积,并准确表征和识别分离的贡献者","authors":"Lucie Kulhankova ,&nbsp;Eric Bindels ,&nbsp;Manfred Kayser ,&nbsp;Eskeatnaf Mulugeta","doi":"10.1016/j.fsigen.2024.103030","DOIUrl":null,"url":null,"abstract":"<div><p>The genetic characterization and identification of individuals who contributed to biological mixtures are complex and mostly unresolved tasks. These tasks are relevant in various fields, particularly in forensic investigations, which frequently encounters crime scene stains generated by more than one person. Currently, forensic mixture deconvolution is mostly performed subsequent to forensic DNA profiling at the level of the mixed DNA profiles, which comes with several limitations. Some previous studies attempted at separating single cells prior to forensic DNA profiling. However, these approaches are biased at selection of the cells and, due to their targeted DNA analysis on low template DNA, provide incomplete and unreliable forensic DNA profiles. We recently demonstrated the feasibility of performing mixture deconvolution prior to forensic DNA profiling through the utilization of a non-targeted single-cell transcriptome sequencing (scRNA-seq). In addition to individual-specific mixture deconvolution, this approach also allowed accurate characterisation of biological sex, biogeographic ancestry and individual identification of the separated mixture contributors. However, RNA has the forensic disadvantage of being prone to degradation, and sequencing RNA - focussing on coding regions - limits the number of single nucleotide polymorphisms (SNPs) utilized for genetic mixture deconvolution, characterization, and identification. These limitations can be overcome by performing single-cell sequencing on the level of DNA instead of RNA. Here, for the first time, we applied non-targeted single-cell DNA sequencing (scDNA-seq) by applying the scATAC-seq (Assay for Transposase-Accessible Chromatin with sequencing) technique to address the challenges of mixture deconvolution in the forensic context. We demonstrated that scATAC-seq, together with our recently developed De-goulash data analysis pipeline, is capable of deconvoluting complex blood mixtures of five individuals from both sexes with varying biogeographic ancestries. We further showed that our approach achieved correct genetic characterization of the biological sex and the biogeographic ancestry of each of the separated mixture contributors and established their identity. Furthermore, by analysing <em>in-silico</em> generated scATAC-seq data mixtures, we demonstrated successful individual-specific mixture deconvolution of i) highly complex mixtures of 11 individuals, ii) balanced mixtures containing as few as 20 cells (10 per each individual), and iii) imbalanced mixtures with a ratio as low as 1:80. Overall, our proof-of-principle study demonstrates the general feasibility of scDNA-seq in general, and scATAC-seq in particular, for mixture deconvolution, genetic characterization and individual identification of the separated mixture contributors. Furthermore, it shows that compared to scRNA-seq, scDNA-seq detects more SNPs from fewer cells, providing higher sensitivity, that is valuable in forensic genetics.</p></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872497324000243/pdfft?md5=70e4d6c76990fd2f3f658d7041bfeb64&pid=1-s2.0-S1872497324000243-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deconvoluting multi-person biological mixtures and accurate characterization and identification of separated contributors using non-targeted single-cell DNA sequencing\",\"authors\":\"Lucie Kulhankova ,&nbsp;Eric Bindels ,&nbsp;Manfred Kayser ,&nbsp;Eskeatnaf Mulugeta\",\"doi\":\"10.1016/j.fsigen.2024.103030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The genetic characterization and identification of individuals who contributed to biological mixtures are complex and mostly unresolved tasks. These tasks are relevant in various fields, particularly in forensic investigations, which frequently encounters crime scene stains generated by more than one person. Currently, forensic mixture deconvolution is mostly performed subsequent to forensic DNA profiling at the level of the mixed DNA profiles, which comes with several limitations. Some previous studies attempted at separating single cells prior to forensic DNA profiling. However, these approaches are biased at selection of the cells and, due to their targeted DNA analysis on low template DNA, provide incomplete and unreliable forensic DNA profiles. We recently demonstrated the feasibility of performing mixture deconvolution prior to forensic DNA profiling through the utilization of a non-targeted single-cell transcriptome sequencing (scRNA-seq). In addition to individual-specific mixture deconvolution, this approach also allowed accurate characterisation of biological sex, biogeographic ancestry and individual identification of the separated mixture contributors. However, RNA has the forensic disadvantage of being prone to degradation, and sequencing RNA - focussing on coding regions - limits the number of single nucleotide polymorphisms (SNPs) utilized for genetic mixture deconvolution, characterization, and identification. These limitations can be overcome by performing single-cell sequencing on the level of DNA instead of RNA. Here, for the first time, we applied non-targeted single-cell DNA sequencing (scDNA-seq) by applying the scATAC-seq (Assay for Transposase-Accessible Chromatin with sequencing) technique to address the challenges of mixture deconvolution in the forensic context. We demonstrated that scATAC-seq, together with our recently developed De-goulash data analysis pipeline, is capable of deconvoluting complex blood mixtures of five individuals from both sexes with varying biogeographic ancestries. We further showed that our approach achieved correct genetic characterization of the biological sex and the biogeographic ancestry of each of the separated mixture contributors and established their identity. Furthermore, by analysing <em>in-silico</em> generated scATAC-seq data mixtures, we demonstrated successful individual-specific mixture deconvolution of i) highly complex mixtures of 11 individuals, ii) balanced mixtures containing as few as 20 cells (10 per each individual), and iii) imbalanced mixtures with a ratio as low as 1:80. Overall, our proof-of-principle study demonstrates the general feasibility of scDNA-seq in general, and scATAC-seq in particular, for mixture deconvolution, genetic characterization and individual identification of the separated mixture contributors. Furthermore, it shows that compared to scRNA-seq, scDNA-seq detects more SNPs from fewer cells, providing higher sensitivity, that is valuable in forensic genetics.</p></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1872497324000243/pdfft?md5=70e4d6c76990fd2f3f658d7041bfeb64&pid=1-s2.0-S1872497324000243-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497324000243\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497324000243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

对生物混合物中的个体进行基因特征描述和鉴定是一项复杂且大多尚未解决的任务。这些任务涉及多个领域,特别是法医调查领域,因为法医调查经常会遇到由不止一个人产生的犯罪现场污点。目前,法医混合物解卷积大多是在法医 DNA 图谱分析之后,在混合 DNA 图谱的水平上进行的,这存在一些局限性。之前的一些研究尝试在法医 DNA 图谱分析之前分离单细胞。然而,这些方法在选择细胞时存在偏差,而且由于其对低模板 DNA 进行有针对性的 DNA 分析,提供的法医 DNA 图谱不完整、不可靠。最近,我们通过利用非靶向单细胞转录组测序(scRNA-seq),证明了在法医 DNA 图谱分析之前进行混合物解卷积的可行性。除了针对特定个体的混合物解卷积外,这种方法还能准确描述生物性别、生物地理祖先,并对分离的混合物贡献者进行个体识别。然而,RNA 在法医学上的缺点是容易降解,而且 RNA 测序(侧重于编码区)限制了用于遗传混合物解卷积、定性和鉴定的单核苷酸多态性(SNP)的数量。这些限制可以通过在 DNA 而不是 RNA 水平上进行单细胞测序来克服。在这里,我们首次应用了非靶向单细胞DNA测序(scDNA-seq)技术,通过使用scATAC-seq(Assay for Transposase-Accessible Chromatin with sequencing)技术来解决法医学中混合物解旋的难题。我们证明,scATAC-seq 与我们最近开发的 De-goulash 数据分析管道相结合,能够对具有不同生物地理祖先的五个男女个体的复杂血液混合物进行解卷积。我们还进一步证明,我们的方法能够正确地确定每个被分离的混合物成分的生物学性别和生物地理祖先,并确定其身份。此外,通过分析生成的 scATAC-seq 数据混合物,我们成功地展示了针对特定个体的混合物解卷积:i) 由 11 个个体组成的高度复杂的混合物;ii) 仅包含 20 个细胞(每个个体 10 个)的平衡混合物;iii) 比率低至 1:80 的不平衡混合物。总之,我们的原理验证研究证明了 scDNA-seq 特别是 scATAC-seq 在混合物解旋、遗传特征描述和分离混合物贡献者的个体鉴定方面的普遍可行性。此外,研究还表明,与 scRNA-seq 相比,scDNA-seq 能从更少的细胞中检测到更多的 SNPs,灵敏度更高,这在法医遗传学中非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deconvoluting multi-person biological mixtures and accurate characterization and identification of separated contributors using non-targeted single-cell DNA sequencing

The genetic characterization and identification of individuals who contributed to biological mixtures are complex and mostly unresolved tasks. These tasks are relevant in various fields, particularly in forensic investigations, which frequently encounters crime scene stains generated by more than one person. Currently, forensic mixture deconvolution is mostly performed subsequent to forensic DNA profiling at the level of the mixed DNA profiles, which comes with several limitations. Some previous studies attempted at separating single cells prior to forensic DNA profiling. However, these approaches are biased at selection of the cells and, due to their targeted DNA analysis on low template DNA, provide incomplete and unreliable forensic DNA profiles. We recently demonstrated the feasibility of performing mixture deconvolution prior to forensic DNA profiling through the utilization of a non-targeted single-cell transcriptome sequencing (scRNA-seq). In addition to individual-specific mixture deconvolution, this approach also allowed accurate characterisation of biological sex, biogeographic ancestry and individual identification of the separated mixture contributors. However, RNA has the forensic disadvantage of being prone to degradation, and sequencing RNA - focussing on coding regions - limits the number of single nucleotide polymorphisms (SNPs) utilized for genetic mixture deconvolution, characterization, and identification. These limitations can be overcome by performing single-cell sequencing on the level of DNA instead of RNA. Here, for the first time, we applied non-targeted single-cell DNA sequencing (scDNA-seq) by applying the scATAC-seq (Assay for Transposase-Accessible Chromatin with sequencing) technique to address the challenges of mixture deconvolution in the forensic context. We demonstrated that scATAC-seq, together with our recently developed De-goulash data analysis pipeline, is capable of deconvoluting complex blood mixtures of five individuals from both sexes with varying biogeographic ancestries. We further showed that our approach achieved correct genetic characterization of the biological sex and the biogeographic ancestry of each of the separated mixture contributors and established their identity. Furthermore, by analysing in-silico generated scATAC-seq data mixtures, we demonstrated successful individual-specific mixture deconvolution of i) highly complex mixtures of 11 individuals, ii) balanced mixtures containing as few as 20 cells (10 per each individual), and iii) imbalanced mixtures with a ratio as low as 1:80. Overall, our proof-of-principle study demonstrates the general feasibility of scDNA-seq in general, and scATAC-seq in particular, for mixture deconvolution, genetic characterization and individual identification of the separated mixture contributors. Furthermore, it shows that compared to scRNA-seq, scDNA-seq detects more SNPs from fewer cells, providing higher sensitivity, that is valuable in forensic genetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
32.30%
发文量
132
审稿时长
11.3 weeks
期刊介绍: Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts. The scope of the journal includes: Forensic applications of human polymorphism. Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies. Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms. Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications. Non-human DNA polymorphisms for crime scene investigation. Population genetics of human polymorphisms of forensic interest. Population data, especially from DNA polymorphisms of interest for the solution of forensic problems. DNA typing methodologies and strategies. Biostatistical methods in forensic genetics. Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches. Standards in forensic genetics. Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards. Quality control. Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies. Criminal DNA databases. Technical, legal and statistical issues. General ethical and legal issues related to forensic genetics.
期刊最新文献
TigerBase: A DNA registration system to enhance enforcement and compliance testing of captive tiger facilities Editorial Board Dense SNP-based analyses complement forensic anthropology biogeographical ancestry assessments Uncertainty in the number of contributor estimation methods applied to a Y-STR profile Shotgun DNA sequencing for human identification: Dynamic SNP selection and likelihood ratio calculations accounting for errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1