{"title":"利用内存分析检测进程注入攻击的新方法","authors":"Mohammed Nasereddin, Raad Al-Qassas","doi":"10.1007/s10207-024-00836-w","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new approach for examining and analyzing fileless malware artifacts in computer memory. The proposed approach offers the distinct advantage of conducting a comprehensive live analysis of memory without the need for periodic memory dumping. Once a new process arrives, log files are collected by monitoring the Event Tracing for Windows facility as well as listing the executables of the active process for violation detection. The proposed approach significantly reduces detection time and minimizes resource consumption by adopting parallel computing (programming), where the main software (Master) divides the work, organizes the process of searching for artifacts, and distributes tasks to several agents. A dataset of 17411 malware samples is used in the assessment of the new approach. It provided satisfactory and reliable results in dealing with at least six different process injection techniques including classic DLL injection, reflective DLL injection, process hollowing, hook injection, registry modifications, and .NET DLL injection. The detection accuracy rate has reached <span>\\(99.93\\%\\)</span> with a false-positive rate of <span>\\(0.068\\%\\)</span>. Moreover, the accuracy was monitored in the case of launching several malwares using different process injection techniques simultaneously, and the detector was able to detect them efficiently. Also, it achieved a detection time with an average of 0.052 msec per detected malware.</p>","PeriodicalId":50316,"journal":{"name":"International Journal of Information Security","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for detecting process injection attacks using memory analysis\",\"authors\":\"Mohammed Nasereddin, Raad Al-Qassas\",\"doi\":\"10.1007/s10207-024-00836-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a new approach for examining and analyzing fileless malware artifacts in computer memory. The proposed approach offers the distinct advantage of conducting a comprehensive live analysis of memory without the need for periodic memory dumping. Once a new process arrives, log files are collected by monitoring the Event Tracing for Windows facility as well as listing the executables of the active process for violation detection. The proposed approach significantly reduces detection time and minimizes resource consumption by adopting parallel computing (programming), where the main software (Master) divides the work, organizes the process of searching for artifacts, and distributes tasks to several agents. A dataset of 17411 malware samples is used in the assessment of the new approach. It provided satisfactory and reliable results in dealing with at least six different process injection techniques including classic DLL injection, reflective DLL injection, process hollowing, hook injection, registry modifications, and .NET DLL injection. The detection accuracy rate has reached <span>\\\\(99.93\\\\%\\\\)</span> with a false-positive rate of <span>\\\\(0.068\\\\%\\\\)</span>. Moreover, the accuracy was monitored in the case of launching several malwares using different process injection techniques simultaneously, and the detector was able to detect them efficiently. Also, it achieved a detection time with an average of 0.052 msec per detected malware.</p>\",\"PeriodicalId\":50316,\"journal\":{\"name\":\"International Journal of Information Security\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10207-024-00836-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10207-024-00836-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A new approach for detecting process injection attacks using memory analysis
This paper introduces a new approach for examining and analyzing fileless malware artifacts in computer memory. The proposed approach offers the distinct advantage of conducting a comprehensive live analysis of memory without the need for periodic memory dumping. Once a new process arrives, log files are collected by monitoring the Event Tracing for Windows facility as well as listing the executables of the active process for violation detection. The proposed approach significantly reduces detection time and minimizes resource consumption by adopting parallel computing (programming), where the main software (Master) divides the work, organizes the process of searching for artifacts, and distributes tasks to several agents. A dataset of 17411 malware samples is used in the assessment of the new approach. It provided satisfactory and reliable results in dealing with at least six different process injection techniques including classic DLL injection, reflective DLL injection, process hollowing, hook injection, registry modifications, and .NET DLL injection. The detection accuracy rate has reached \(99.93\%\) with a false-positive rate of \(0.068\%\). Moreover, the accuracy was monitored in the case of launching several malwares using different process injection techniques simultaneously, and the detector was able to detect them efficiently. Also, it achieved a detection time with an average of 0.052 msec per detected malware.
期刊介绍:
The International Journal of Information Security is an English language periodical on research in information security which offers prompt publication of important technical work, whether theoretical, applicable, or related to implementation.
Coverage includes system security: intrusion detection, secure end systems, secure operating systems, database security, security infrastructures, security evaluation; network security: Internet security, firewalls, mobile security, security agents, protocols, anti-virus and anti-hacker measures; content protection: watermarking, software protection, tamper resistant software; applications: electronic commerce, government, health, telecommunications, mobility.