通过实验和建模相结合的方法考察纤维增强生物复合材料的弯曲测试特性

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-03-16 DOI:10.1177/00219983241240819
Khalissa Saada, Chouki Farsi, Salah Amroune, Mohamed Fnides, Moussa Zaoui, Hocine Heraiz
{"title":"通过实验和建模相结合的方法考察纤维增强生物复合材料的弯曲测试特性","authors":"Khalissa Saada, Chouki Farsi, Salah Amroune, Mohamed Fnides, Moussa Zaoui, Hocine Heraiz","doi":"10.1177/00219983241240819","DOIUrl":null,"url":null,"abstract":"This study explores the relationship between natural fiber filling density (10%, 15%, 25%) and its impact on the bending properties of polymer compounds reinforced with Diss, Sisal and Luffa fibers. Using advanced techniques like fiber analysis and Fourier transform infrared spectrometry (FTIR), the research reveals that a 25% filling density results in the highest stress values (25.61 MPa, 22.21 MPa and 20.88 MPa) for Diss, Sisal and Luffa compounds, respectively, fostering robust bonds in Diss-reinforced polymers. The Artificial Neural Network (ANN) model demonstrates superior predictive capability with correlation coefficients exceeding 0.99 for stress and displacement, outperforming Response Surface Methodology (RSM). Analysis of Variance (ANOVA) underscores the impact of sample section parameters and fiber rate on stress, establishing the significance of type parameters and fiber rate on displacement. This integration of ANN and RSM represents a paradigm shift in predicting bending mechanical properties, advancing our understanding of composite materials for innovative applications.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"16 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the bending test properties of bio-composites strengthened with fibers through a combination of experimental and modeling approaches\",\"authors\":\"Khalissa Saada, Chouki Farsi, Salah Amroune, Mohamed Fnides, Moussa Zaoui, Hocine Heraiz\",\"doi\":\"10.1177/00219983241240819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the relationship between natural fiber filling density (10%, 15%, 25%) and its impact on the bending properties of polymer compounds reinforced with Diss, Sisal and Luffa fibers. Using advanced techniques like fiber analysis and Fourier transform infrared spectrometry (FTIR), the research reveals that a 25% filling density results in the highest stress values (25.61 MPa, 22.21 MPa and 20.88 MPa) for Diss, Sisal and Luffa compounds, respectively, fostering robust bonds in Diss-reinforced polymers. The Artificial Neural Network (ANN) model demonstrates superior predictive capability with correlation coefficients exceeding 0.99 for stress and displacement, outperforming Response Surface Methodology (RSM). Analysis of Variance (ANOVA) underscores the impact of sample section parameters and fiber rate on stress, establishing the significance of type parameters and fiber rate on displacement. This integration of ANN and RSM represents a paradigm shift in predicting bending mechanical properties, advancing our understanding of composite materials for innovative applications.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241240819\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241240819","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了天然纤维填充密度(10%、15%、25%)之间的关系及其对使用屾纤维、剑麻纤维和丝瓜纤维增强的聚合物化合物弯曲性能的影响。通过使用纤维分析和傅立叶变换红外光谱仪(FTIR)等先进技术,研究发现填充密度为 25% 的屾纤维、剑麻纤维和丝瓜纤维化合物的应力值最高(分别为 25.61 兆帕、22.21 兆帕和 20.88 兆帕),从而促进了屾纤维增强聚合物的牢固结合。人工神经网络(ANN)模型显示出卓越的预测能力,应力和位移的相关系数超过 0.99,优于响应面方法(RSM)。方差分析 (ANOVA) 强调了样品截面参数和纤维率对应力的影响,并确定了类型参数和纤维率对位移的重要性。这种将 ANN 和 RSM 相结合的方法代表了预测弯曲机械性能的范式转变,推动了我们对复合材料创新应用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining the bending test properties of bio-composites strengthened with fibers through a combination of experimental and modeling approaches
This study explores the relationship between natural fiber filling density (10%, 15%, 25%) and its impact on the bending properties of polymer compounds reinforced with Diss, Sisal and Luffa fibers. Using advanced techniques like fiber analysis and Fourier transform infrared spectrometry (FTIR), the research reveals that a 25% filling density results in the highest stress values (25.61 MPa, 22.21 MPa and 20.88 MPa) for Diss, Sisal and Luffa compounds, respectively, fostering robust bonds in Diss-reinforced polymers. The Artificial Neural Network (ANN) model demonstrates superior predictive capability with correlation coefficients exceeding 0.99 for stress and displacement, outperforming Response Surface Methodology (RSM). Analysis of Variance (ANOVA) underscores the impact of sample section parameters and fiber rate on stress, establishing the significance of type parameters and fiber rate on displacement. This integration of ANN and RSM represents a paradigm shift in predicting bending mechanical properties, advancing our understanding of composite materials for innovative applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1