{"title":"知识图谱完备性测量技术分类","authors":"Ying Zhang, Gang Xiao","doi":"10.23919/jsee.2023.000150","DOIUrl":null,"url":null,"abstract":"At present, although knowledge graphs have been widely used in various fields such as recommendation systems, question and answer systems, and intelligent search, there are always quality problems such as knowledge omissions and errors. Quality assessment and control, as an important means to ensure the quality of knowledge, can make the applications based on knowledge graphs more complete and more accurate by reasonably assessing the knowledge graphs and fixing and improving the quality problems at the same time. Therefore, as an indispensable part of the knowledge graph construction process, the results of quality assessment and control determine the usefulness of the knowledge graph. Among them, the assessment and enhancement of completeness, as an important part of the assessment and control phase, determine whether the knowledge graph can fully reflect objective phenomena and reveal potential connections among entities. In this paper, we review specific techniques of completeness assessment and classify completeness assessment techniques in terms of closed world assumptions, open world assumptions, and partial completeness assumptions. The purpose of this paper is to further promote the development of knowledge graph quality control and to lay the foundation for subsequent research on the completeness assessment of knowledge graphs by reviewing and classifying completeness assessment techniques.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Knowledge Graph Completeness Measurement Techniques\",\"authors\":\"Ying Zhang, Gang Xiao\",\"doi\":\"10.23919/jsee.2023.000150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, although knowledge graphs have been widely used in various fields such as recommendation systems, question and answer systems, and intelligent search, there are always quality problems such as knowledge omissions and errors. Quality assessment and control, as an important means to ensure the quality of knowledge, can make the applications based on knowledge graphs more complete and more accurate by reasonably assessing the knowledge graphs and fixing and improving the quality problems at the same time. Therefore, as an indispensable part of the knowledge graph construction process, the results of quality assessment and control determine the usefulness of the knowledge graph. Among them, the assessment and enhancement of completeness, as an important part of the assessment and control phase, determine whether the knowledge graph can fully reflect objective phenomena and reveal potential connections among entities. In this paper, we review specific techniques of completeness assessment and classify completeness assessment techniques in terms of closed world assumptions, open world assumptions, and partial completeness assumptions. The purpose of this paper is to further promote the development of knowledge graph quality control and to lay the foundation for subsequent research on the completeness assessment of knowledge graphs by reviewing and classifying completeness assessment techniques.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2023.000150\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2023.000150","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Classification of Knowledge Graph Completeness Measurement Techniques
At present, although knowledge graphs have been widely used in various fields such as recommendation systems, question and answer systems, and intelligent search, there are always quality problems such as knowledge omissions and errors. Quality assessment and control, as an important means to ensure the quality of knowledge, can make the applications based on knowledge graphs more complete and more accurate by reasonably assessing the knowledge graphs and fixing and improving the quality problems at the same time. Therefore, as an indispensable part of the knowledge graph construction process, the results of quality assessment and control determine the usefulness of the knowledge graph. Among them, the assessment and enhancement of completeness, as an important part of the assessment and control phase, determine whether the knowledge graph can fully reflect objective phenomena and reveal potential connections among entities. In this paper, we review specific techniques of completeness assessment and classify completeness assessment techniques in terms of closed world assumptions, open world assumptions, and partial completeness assumptions. The purpose of this paper is to further promote the development of knowledge graph quality control and to lay the foundation for subsequent research on the completeness assessment of knowledge graphs by reviewing and classifying completeness assessment techniques.