{"title":"基于极化散射特性的短时海上目标探测","authors":"Shichao Chen, Feng Luo, Min Tian, Wanghan Lyu","doi":"10.23919/jsee.2023.000148","DOIUrl":null,"url":null,"abstract":"In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Time Maritime Target Detection Based on Polarization Scattering Characteristics\",\"authors\":\"Shichao Chen, Feng Luo, Min Tian, Wanghan Lyu\",\"doi\":\"10.23919/jsee.2023.000148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.\",\"PeriodicalId\":50030,\"journal\":{\"name\":\"Journal of Systems Engineering and Electronics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Engineering and Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.23919/jsee.2023.000148\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.23919/jsee.2023.000148","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种基于海杂波背景下极化散射特性的卡梅隆分解探测方法。首先,利用卡梅隆分解在数据层面对全极化信道的雷达回波进行融合。由于目标表面的人工材料结构,可以证明目标单元的非互易性强于杂波单元。然后,在分析分解结果的基础上,提取具有极化域散射几何特征的新特征,即卡梅伦极化分解散射权重(CPD-SW)作为测试统计量,利用其散射类型的差异实现对杂波散射特征更详细的描述。最后,通过 IPIX 测量数据集验证了 CPD-SW 检测器在提高检测性能方面优于传统检测器,在阈值检测中具有较强的短时观测稳定性,还能提高异常检测中特征空间 z 的可分离性。
Short-Time Maritime Target Detection Based on Polarization Scattering Characteristics
In this paper, a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed. Firstly, the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level. Due to the artificial material structure on the surface of the target, it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell. Then, based on the analysis of the decomposition results, a new feature with scattering geometry characteristics in polarization domain, denoted as Cameron polarization decomposition scattering weight (CPD-SW), is extracted as the test statistic, which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types. Finally, the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset, which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.