{"title":"铯高压脉冲放电中的两种等离子体通道结构","authors":"F. G. Baksht, V. F. Lapshin","doi":"10.1134/s1063785023010091","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Simulation of the pulse-periodic high pressure cesium discharge is performed on the basis of equations of radiative gas dynamics. It is shown that in the discharge it is possible to implement two different types of structure of the plasma channel. At the beginning of the current pulse, the plasma discharge channel has a centered structure. At the same time, most of the plasma is concentrated near the discharge axis. The concentration of charged particles decreases along the radius. Then, if the current amplitude is large enough, during the plasma heating process, a transformation from the centered to the shell structure of the channel occurs. In this case, most of the plasma is concentrated on the periphery of the discharge and its concentration increases along the radius from the axis to the walls of the tube. It is shown that the transition from one channel structure to another occurs at a time when the specific heat capacity of the plasma near the axis reaches a deep minimum corresponding to a completely single ionized <i>e</i>–<i>i</i>-plasma.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Types of Plasma Channel Structure in High Pressure Pulse Discharge in Cesium\",\"authors\":\"F. G. Baksht, V. F. Lapshin\",\"doi\":\"10.1134/s1063785023010091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Simulation of the pulse-periodic high pressure cesium discharge is performed on the basis of equations of radiative gas dynamics. It is shown that in the discharge it is possible to implement two different types of structure of the plasma channel. At the beginning of the current pulse, the plasma discharge channel has a centered structure. At the same time, most of the plasma is concentrated near the discharge axis. The concentration of charged particles decreases along the radius. Then, if the current amplitude is large enough, during the plasma heating process, a transformation from the centered to the shell structure of the channel occurs. In this case, most of the plasma is concentrated on the periphery of the discharge and its concentration increases along the radius from the axis to the walls of the tube. It is shown that the transition from one channel structure to another occurs at a time when the specific heat capacity of the plasma near the axis reaches a deep minimum corresponding to a completely single ionized <i>e</i>–<i>i</i>-plasma.</p>\",\"PeriodicalId\":784,\"journal\":{\"name\":\"Technical Physics Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s1063785023010091\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023010091","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Two Types of Plasma Channel Structure in High Pressure Pulse Discharge in Cesium
Abstract
Simulation of the pulse-periodic high pressure cesium discharge is performed on the basis of equations of radiative gas dynamics. It is shown that in the discharge it is possible to implement two different types of structure of the plasma channel. At the beginning of the current pulse, the plasma discharge channel has a centered structure. At the same time, most of the plasma is concentrated near the discharge axis. The concentration of charged particles decreases along the radius. Then, if the current amplitude is large enough, during the plasma heating process, a transformation from the centered to the shell structure of the channel occurs. In this case, most of the plasma is concentrated on the periphery of the discharge and its concentration increases along the radius from the axis to the walls of the tube. It is shown that the transition from one channel structure to another occurs at a time when the specific heat capacity of the plasma near the axis reaches a deep minimum corresponding to a completely single ionized e–i-plasma.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.