通过电气化瞬态高温合成实现高效化学生产

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-08-01 DOI:10.1016/j.esci.2024.100253
{"title":"通过电气化瞬态高温合成实现高效化学生产","authors":"","doi":"10.1016/j.esci.2024.100253","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the current energy and environmental challenges, reducing or replacing reliance on fossil fuels and striving for carbon neutrality seems to be the only viable choice. Recently, a cutting-edge, eco-friendly method of chemical synthesis via transient Joule heating (JH) demonstrated significant promise across various domains, including methane reforming, ammonia synthesis, volatile organic compounds removal, plastic recycling, the synthesis of functional carbon materials from repurposed solid waste, etc. In this review, the advantages, and latest developments in thermochemical synthesis by flash and transient JH are comprehensively outlined. Unlike the ongoing heating process of conventional furnaces that consume fossil fuels, dynamic and transient JH can get significantly higher reaction rates, energy efficiency, flexibility, and versatility. Subsequently, the transient reaction mechanism, data science optimization, and scale-up production models are discussed, and prospects for the integration of the electrified chemical industry with renewable energy for carbon neutrality and long-term energy storage are also envisioned.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 4","pages":"Article 100253"},"PeriodicalIF":42.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141724000326/pdfft?md5=435d7e56178554aeaf6ce1b8ccaa8b7d&pid=1-s2.0-S2667141724000326-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly efficient chemical production via electrified, transient high-temperature synthesis\",\"authors\":\"\",\"doi\":\"10.1016/j.esci.2024.100253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In response to the current energy and environmental challenges, reducing or replacing reliance on fossil fuels and striving for carbon neutrality seems to be the only viable choice. Recently, a cutting-edge, eco-friendly method of chemical synthesis via transient Joule heating (JH) demonstrated significant promise across various domains, including methane reforming, ammonia synthesis, volatile organic compounds removal, plastic recycling, the synthesis of functional carbon materials from repurposed solid waste, etc. In this review, the advantages, and latest developments in thermochemical synthesis by flash and transient JH are comprehensively outlined. Unlike the ongoing heating process of conventional furnaces that consume fossil fuels, dynamic and transient JH can get significantly higher reaction rates, energy efficiency, flexibility, and versatility. Subsequently, the transient reaction mechanism, data science optimization, and scale-up production models are discussed, and prospects for the integration of the electrified chemical industry with renewable energy for carbon neutrality and long-term energy storage are also envisioned.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 4\",\"pages\":\"Article 100253\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000326/pdfft?md5=435d7e56178554aeaf6ce1b8ccaa8b7d&pid=1-s2.0-S2667141724000326-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

为应对当前的能源和环境挑战,减少或取代对化石燃料的依赖并努力实现碳中和似乎是唯一可行的选择。最近,一种通过瞬态焦耳加热(JH)进行化学合成的前沿环保方法在多个领域展现出巨大前景,包括甲烷重整、氨合成、挥发性有机化合物去除、塑料回收、从再利用固体废弃物中合成功能性碳材料等。在这篇综述中,我们将全面概述闪蒸和瞬时 JH 热化学合成的优势和最新发展。与消耗化石燃料的传统炉子的持续加热过程不同,动态和瞬态 JH 可以显著提高反应速率、能效、灵活性和通用性。随后,还讨论了瞬态反应机理、数据科学优化和放大生产模型,并展望了电气化化学工业与可再生能源的整合,以实现碳中和和长期能源储存的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient chemical production via electrified, transient high-temperature synthesis

In response to the current energy and environmental challenges, reducing or replacing reliance on fossil fuels and striving for carbon neutrality seems to be the only viable choice. Recently, a cutting-edge, eco-friendly method of chemical synthesis via transient Joule heating (JH) demonstrated significant promise across various domains, including methane reforming, ammonia synthesis, volatile organic compounds removal, plastic recycling, the synthesis of functional carbon materials from repurposed solid waste, etc. In this review, the advantages, and latest developments in thermochemical synthesis by flash and transient JH are comprehensively outlined. Unlike the ongoing heating process of conventional furnaces that consume fossil fuels, dynamic and transient JH can get significantly higher reaction rates, energy efficiency, flexibility, and versatility. Subsequently, the transient reaction mechanism, data science optimization, and scale-up production models are discussed, and prospects for the integration of the electrified chemical industry with renewable energy for carbon neutrality and long-term energy storage are also envisioned.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1