将数据驱动计算应用于经颅超声刺激下人脑粘弹性反应的患者特异性预测。

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2024-03-19 DOI:10.1007/s10237-024-01830-w
Hossein Salahshoor, Michael Ortiz
{"title":"将数据驱动计算应用于经颅超声刺激下人脑粘弹性反应的患者特异性预测。","authors":"Hossein Salahshoor,&nbsp;Michael Ortiz","doi":"10.1007/s10237-024-01830-w","DOIUrl":null,"url":null,"abstract":"<div><p>We present a class of model-free Data-Driven solvers that effectively enable the utilization of in situ and in vivo imaging data <i>directly</i> in full-scale calculations of the mechanical response of the human brain to sonic and ultrasonic stimulation, entirely bypassing the need for analytical modeling or regression of the data. The well-posedness of the approach and its convergence with respect to data are proven analytically. We demonstrate the approach, including its ability to make detailed spatially resolved patient-specific predictions of wave patterns, using public-domain MRI images, MRE data and commercially available solid-mechanics software.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 4","pages":"1161 - 1177"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Data-Driven computing to patient-specific prediction of the viscoelastic response of human brain under transcranial ultrasound stimulation\",\"authors\":\"Hossein Salahshoor,&nbsp;Michael Ortiz\",\"doi\":\"10.1007/s10237-024-01830-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a class of model-free Data-Driven solvers that effectively enable the utilization of in situ and in vivo imaging data <i>directly</i> in full-scale calculations of the mechanical response of the human brain to sonic and ultrasonic stimulation, entirely bypassing the need for analytical modeling or regression of the data. The well-posedness of the approach and its convergence with respect to data are proven analytically. We demonstrate the approach, including its ability to make detailed spatially resolved patient-specific predictions of wave patterns, using public-domain MRI images, MRE data and commercially available solid-mechanics software.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"23 4\",\"pages\":\"1161 - 1177\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-024-01830-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01830-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类无模型的数据驱动求解器,它能有效地将原位和活体成像数据直接用于人脑对声波和超声波刺激的机械响应的全尺度计算,完全绕过了对数据进行分析建模或回归的需要。通过分析证明了该方法的良好假设性及其与数据的收敛性。我们利用公共域核磁共振成像图像、MRE 数据和市面上的固体力学软件演示了该方法,包括其对特定患者波形进行详细空间解析预测的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Data-Driven computing to patient-specific prediction of the viscoelastic response of human brain under transcranial ultrasound stimulation

We present a class of model-free Data-Driven solvers that effectively enable the utilization of in situ and in vivo imaging data directly in full-scale calculations of the mechanical response of the human brain to sonic and ultrasonic stimulation, entirely bypassing the need for analytical modeling or regression of the data. The well-posedness of the approach and its convergence with respect to data are proven analytically. We demonstrate the approach, including its ability to make detailed spatially resolved patient-specific predictions of wave patterns, using public-domain MRI images, MRE data and commercially available solid-mechanics software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
A review on the mucus dynamics in the human respiratory airway. The mechanical response of polymeric gyroid structures in an optimised orthotic insole. Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study. A non-intrusive reduced-order model for finite element analysis of implant positioning in total hip replacements. Comparison and identification of human coronary plaques with/without erosion using patient-specific optical coherence tomography-based fluid-structure interaction models: a pilot study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1