Turgut Atay, Sait Ertürk, Mustafa Alkan, Şaban Kordali, Ferah Yılmaz, Aydemir Barış, Solmaz Ghanbari, Cansu Doğan, Umut Toprak
{"title":"硼化合物对蓖麻毛虫(鞘翅目:Tenebrionidae)有效:减少脂肪生成和诱导体重减轻。","authors":"Turgut Atay, Sait Ertürk, Mustafa Alkan, Şaban Kordali, Ferah Yılmaz, Aydemir Barış, Solmaz Ghanbari, Cansu Doğan, Umut Toprak","doi":"10.1002/arch.22098","DOIUrl":null,"url":null,"abstract":"<p>In the current study, we investigated the insecticidal efficacy of two borates, disodium octaborate tetrahydrate (Etidot-67) and calcium metaborate (CMB) via surface application or diet delivery on the red flour beetle, <i>Tribolium castaneum</i> (Herbst, 1797) (Coleoptera: Tenebrionidae). The application method did not change the boron-related mortality, but CMB was more effective than Etidot-67. At the highest dose, it took around 13 days to reach the highest mortality (≥98.1%) for CMB, while it was 19 days for Etidot-67 (≥95.8%). Both boron compounds led to a significant reduction in triglyceride levels in parallel to the downregulation of acetyl-CoA carboxylase (<i>ACC</i>) and fatty acid synthase (<i>FAS</i>), the two primary genes involved in de novo lipogenesis, while they also induced body weight loss. In conclusion, the current study indicated the insecticidal potential of boron compounds but CMB is more promising and more effective in controlling <i>T. castaneum</i>, while lipogenesis is inhibited and weight loss is induced by boron compounds.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22098","citationCount":"0","resultStr":"{\"title\":\"Boron compounds are effective on Tribolium castaneum (Coleoptera: Tenebrionidae): Reduced lipogenesis and induced body weight loss\",\"authors\":\"Turgut Atay, Sait Ertürk, Mustafa Alkan, Şaban Kordali, Ferah Yılmaz, Aydemir Barış, Solmaz Ghanbari, Cansu Doğan, Umut Toprak\",\"doi\":\"10.1002/arch.22098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current study, we investigated the insecticidal efficacy of two borates, disodium octaborate tetrahydrate (Etidot-67) and calcium metaborate (CMB) via surface application or diet delivery on the red flour beetle, <i>Tribolium castaneum</i> (Herbst, 1797) (Coleoptera: Tenebrionidae). The application method did not change the boron-related mortality, but CMB was more effective than Etidot-67. At the highest dose, it took around 13 days to reach the highest mortality (≥98.1%) for CMB, while it was 19 days for Etidot-67 (≥95.8%). Both boron compounds led to a significant reduction in triglyceride levels in parallel to the downregulation of acetyl-CoA carboxylase (<i>ACC</i>) and fatty acid synthase (<i>FAS</i>), the two primary genes involved in de novo lipogenesis, while they also induced body weight loss. In conclusion, the current study indicated the insecticidal potential of boron compounds but CMB is more promising and more effective in controlling <i>T. castaneum</i>, while lipogenesis is inhibited and weight loss is induced by boron compounds.</p>\",\"PeriodicalId\":8281,\"journal\":{\"name\":\"Archives of Insect Biochemistry and Physiology\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Insect Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/arch.22098\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22098","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Boron compounds are effective on Tribolium castaneum (Coleoptera: Tenebrionidae): Reduced lipogenesis and induced body weight loss
In the current study, we investigated the insecticidal efficacy of two borates, disodium octaborate tetrahydrate (Etidot-67) and calcium metaborate (CMB) via surface application or diet delivery on the red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae). The application method did not change the boron-related mortality, but CMB was more effective than Etidot-67. At the highest dose, it took around 13 days to reach the highest mortality (≥98.1%) for CMB, while it was 19 days for Etidot-67 (≥95.8%). Both boron compounds led to a significant reduction in triglyceride levels in parallel to the downregulation of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), the two primary genes involved in de novo lipogenesis, while they also induced body weight loss. In conclusion, the current study indicated the insecticidal potential of boron compounds but CMB is more promising and more effective in controlling T. castaneum, while lipogenesis is inhibited and weight loss is induced by boron compounds.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.