Shasha Han, Joel Goh, Fanwen Meng, Melvin Khee-Shing Leow, Donald B Rubin
{"title":"针对多重干预因果推断的对比度倾向分数。","authors":"Shasha Han, Joel Goh, Fanwen Meng, Melvin Khee-Shing Leow, Donald B Rubin","doi":"10.1177/09622802241236952","DOIUrl":null,"url":null,"abstract":"<p><p>Existing methods that use propensity scores for heterogeneous treatment effect estimation on non-experimental data do not readily extend to the case of more than two treatment options. In this work, we develop a new propensity score-based method for heterogeneous treatment effect estimation when there are three or more treatment options, and prove that it generates unbiased estimates. We demonstrate our method on a real patient registry of patients in Singapore with diabetic dyslipidemia. On this dataset, our method generates heterogeneous treatment recommendations for patients among three options: Statins, fibrates, and non-pharmacological treatment to control patients' lipid ratios (total cholesterol divided by high-density lipoprotein level). In our numerical study, our proposed method generated more stable estimates compared to a benchmark method based on a multi-dimensional propensity score.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"825-837"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrast-specific propensity scores for causal inference with multiple interventions.\",\"authors\":\"Shasha Han, Joel Goh, Fanwen Meng, Melvin Khee-Shing Leow, Donald B Rubin\",\"doi\":\"10.1177/09622802241236952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing methods that use propensity scores for heterogeneous treatment effect estimation on non-experimental data do not readily extend to the case of more than two treatment options. In this work, we develop a new propensity score-based method for heterogeneous treatment effect estimation when there are three or more treatment options, and prove that it generates unbiased estimates. We demonstrate our method on a real patient registry of patients in Singapore with diabetic dyslipidemia. On this dataset, our method generates heterogeneous treatment recommendations for patients among three options: Statins, fibrates, and non-pharmacological treatment to control patients' lipid ratios (total cholesterol divided by high-density lipoprotein level). In our numerical study, our proposed method generated more stable estimates compared to a benchmark method based on a multi-dimensional propensity score.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"825-837\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241236952\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241236952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Contrast-specific propensity scores for causal inference with multiple interventions.
Existing methods that use propensity scores for heterogeneous treatment effect estimation on non-experimental data do not readily extend to the case of more than two treatment options. In this work, we develop a new propensity score-based method for heterogeneous treatment effect estimation when there are three or more treatment options, and prove that it generates unbiased estimates. We demonstrate our method on a real patient registry of patients in Singapore with diabetic dyslipidemia. On this dataset, our method generates heterogeneous treatment recommendations for patients among three options: Statins, fibrates, and non-pharmacological treatment to control patients' lipid ratios (total cholesterol divided by high-density lipoprotein level). In our numerical study, our proposed method generated more stable estimates compared to a benchmark method based on a multi-dimensional propensity score.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)