利用纵向胸部 X 光片和报告预填放射科报告。

Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu
{"title":"利用纵向胸部 X 光片和报告预填放射科报告。","authors":"Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu","doi":"10.1007/978-3-031-43904-9_19","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the \"findings\" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called <i>Longitudinal-MIMIC</i>. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the \"findings\" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947431/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports.\",\"authors\":\"Qingqing Zhu, Tejas Sudharshan Mathai, Pritam Mukherjee, Yifan Peng, Ronald M Summers, Zhiyong Lu\",\"doi\":\"10.1007/978-3-031-43904-9_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the \\\"findings\\\" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called <i>Longitudinal-MIMIC</i>. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the \\\"findings\\\" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10947431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43904-9_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43904-9_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管使用语音识别软件缩短了放射学报告的周转时间,但持续存在的交流错误会严重影响放射学报告的解读。预填放射学报告有望减少报告错误,尽管有许多文献致力于生成全面的医疗报告,但缺乏利用 MIMIC-CXR 数据集中患者就诊记录纵向性质的方法。为了弥补这一不足,我们建议使用纵向多模态数据,即患者前次就诊的 CXR、本次就诊的 CXR 和前次就诊报告,来预先填写患者本次就诊的 "检查结果 "部分。我们首先从 MIMIC-CXR 数据集中收集了 26625 名患者的纵向就诊信息,并创建了一个名为 "纵向-MIMIC "的新数据集。利用这个新数据集,我们训练了一个基于变换器的模型,通过一个基于交叉注意的多模态融合模块和一个分层记忆驱动解码器,从患者就诊记录(CXR 图像+报告)中捕捉多模态纵向信息。与以往仅使用当前就诊数据作为输入来训练模型的工作不同,我们的工作是利用可用的纵向信息来预先填充放射学报告中的 "检查结果 "部分。实验表明,我们的方法在 F1 分数上≥3%,在 BLEU-4、METEOR 和 ROUGE-L 上分别≥2%,优于最近的几种方法。代码将发布在 https://github.com/CelestialShine/Longitudinal-Chest-X-Ray 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing Longitudinal Chest X-Rays and Reports to Pre-fill Radiology Reports.

Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.e., previous patient visit CXR, current visit CXR, and the previous visit report, to pre-fill the "findings" section of the patient's current visit. We first gathered the longitudinal visit information for 26,625 patients from the MIMIC-CXR dataset, and created a new dataset called Longitudinal-MIMIC. With this new dataset, a transformer-based model was trained to capture the multi-modal longitudinal information from patient visit records (CXR images + reports) via a cross-attention-based multi-modal fusion module and a hierarchical memory-driven decoder. In contrast to previous works that only uses current visit data as input to train a model, our work exploits the longitudinal information available to pre-fill the "findings" section of radiology reports. Experiments show that our approach outperforms several recent approaches by ≥3% on F1 score, and ≥2% for BLEU-4, METEOR and ROUGE-L respectively. Code will be published at https://github.com/CelestialShine/Longitudinal-Chest-X-Ray.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer. Estimation and Analysis of Slice Propagation Uncertainty in 3D Anatomy Segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1