一种基于事件的神经压缩遥测技术,可为高带宽皮层内脑计算机接口提供大于 11 倍的无损数据减少。

Yuming He;Stan van der Ven;Hua-Peng Liaw;Chengyao Shi;Pietro Russo;Marios Gourdouparis;Mario Konijnenburg;Stefano Traferro;Martijn Timmermans;Carolina Mora Lopez;Pieter Harpe;Eugenio Cantatore;Elisabetta Chicca;Yao-Hong Liu
{"title":"一种基于事件的神经压缩遥测技术,可为高带宽皮层内脑计算机接口提供大于 11 倍的无损数据减少。","authors":"Yuming He;Stan van der Ven;Hua-Peng Liaw;Chengyao Shi;Pietro Russo;Marios Gourdouparis;Mario Konijnenburg;Stefano Traferro;Martijn Timmermans;Carolina Mora Lopez;Pieter Harpe;Eugenio Cantatore;Elisabetta Chicca;Yao-Hong Liu","doi":"10.1109/TBCAS.2024.3378973","DOIUrl":null,"url":null,"abstract":"Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Event-Based Neural Compressive Telemetry With >11× Loss-Less Data Reduction for High-Bandwidth Intracortical Brain Computer Interfaces\",\"authors\":\"Yuming He;Stan van der Ven;Hua-Peng Liaw;Chengyao Shi;Pietro Russo;Marios Gourdouparis;Mario Konijnenburg;Stefano Traferro;Martijn Timmermans;Carolina Mora Lopez;Pieter Harpe;Eugenio Cantatore;Elisabetta Chicca;Yao-Hong Liu\",\"doi\":\"10.1109/TBCAS.2024.3378973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10474507/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10474507/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮层内脑机接口具有卓越的空间和时间分辨率,但也面临着挑战,因为记录通道的数量不断增加,需要传输大量数据。这需要耗电的数据串行化和遥测,导致潜在的组织损伤风险。为应对这一挑战,本文介绍了基于事件的神经压缩遥测技术(NCT),该技术由 8 个旋转通道 Δ-ADC、支持拟议三元地址事件表示协议的事件驱动串行器和基于事件的 LVDS 驱动器组成。利用细胞外尖峰的高稀疏性和高密度记录的高空间相关性,拟议的 NCT 实现了大于 11.4 倍的压缩比,而每个通道的功耗仅为 1 μW,比现有技术的效率高 127 倍。NCT 很好地保留了尖峰波形的保真度,归一化均方根误差也很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Event-Based Neural Compressive Telemetry With >11× Loss-Less Data Reduction for High-Bandwidth Intracortical Brain Computer Interfaces
Intracortical brain-computer interfaces offer superior spatial and temporal resolutions, but face challenges as the increasing number of recording channels introduces high amounts of data to be transferred. This requires power-hungry data serialization and telemetry, leading to potential tissue damage risks. To address this challenge, this paper introduces an event-based neural compressive telemetry (NCT) consisting of 8 channel-rotating Δ-ADCs, an event-driven serializer supporting a proposed ternary address event representation protocol, and an event-based LVDS driver. Leveraging a high sparsity of extracellular spikes and high spatial correlation of the high-density recordings, the proposed NCT achieves a compression ratio of >11.4×, while consumes only 1 µW per channel, which is 127× more efficient than state of the art. The NCT well preserves the spike waveform fidelity, and has a low normalized RMS error <23% even with a spike amplitude down to only 31 µV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1