{"title":"木质纤维素基质的单糖成分--微波辅助酸水解条件的优化","authors":"Francesca Modugno, Jeannette Jacqueline Łucejko","doi":"10.1016/j.talo.2024.100312","DOIUrl":null,"url":null,"abstract":"<div><p>Compositional analysis of polysaccharides is crucial in many applications of analytical chemistry, and typically involves hydrolysis as initial step, to break glycosidic bonds and release individual monosaccharide units. We developed a new method for the microwave-assisted acid hydrolysis of polysaccharides, here applied for determining the composition of the polysaccharide fraction within the lignocellulosic matrix of <em>Pinus sylvestris</em>. The optimisation of reaction conditions was carried out using a GC–MS method after a double-step sugar derivatization process.</p><p>Under the optimized conditions, specifically, employing 2 M TFA, 40 min, and 120 °C, a high depolymerisation yield was achieved with minimal degradation. Furthermore, the amount of polysaccharides detected in pine wood aligns with the results in existing literature, substantiating the determined chemical composition.</p><p>The synergy of microwave-assisted acid hydrolysis and full factorial design not only facilitated the determination of the optimal hydrolysis conditions but also enabled the assessment of the parameters influencing the polysaccharide hydrolysis process and their relationships. This approach made it feasible to achieve maximum hydrolysis efficiency while minimizing analyte degradation, employing a method that reduces environmental impact through the use of microwave energy. This strategy effectively reduced the required reaction temperature, time, and reagent quantities.</p></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"9 ","pages":"Article 100312"},"PeriodicalIF":4.1000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666831924000262/pdfft?md5=93501f3c8763608fd5623e01d0f66fe2&pid=1-s2.0-S2666831924000262-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Monosaccharide composition of lignocellulosic matrix—Optimization of microwave-assisted acid hydrolysis condition\",\"authors\":\"Francesca Modugno, Jeannette Jacqueline Łucejko\",\"doi\":\"10.1016/j.talo.2024.100312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compositional analysis of polysaccharides is crucial in many applications of analytical chemistry, and typically involves hydrolysis as initial step, to break glycosidic bonds and release individual monosaccharide units. We developed a new method for the microwave-assisted acid hydrolysis of polysaccharides, here applied for determining the composition of the polysaccharide fraction within the lignocellulosic matrix of <em>Pinus sylvestris</em>. The optimisation of reaction conditions was carried out using a GC–MS method after a double-step sugar derivatization process.</p><p>Under the optimized conditions, specifically, employing 2 M TFA, 40 min, and 120 °C, a high depolymerisation yield was achieved with minimal degradation. Furthermore, the amount of polysaccharides detected in pine wood aligns with the results in existing literature, substantiating the determined chemical composition.</p><p>The synergy of microwave-assisted acid hydrolysis and full factorial design not only facilitated the determination of the optimal hydrolysis conditions but also enabled the assessment of the parameters influencing the polysaccharide hydrolysis process and their relationships. This approach made it feasible to achieve maximum hydrolysis efficiency while minimizing analyte degradation, employing a method that reduces environmental impact through the use of microwave energy. This strategy effectively reduced the required reaction temperature, time, and reagent quantities.</p></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"9 \",\"pages\":\"Article 100312\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000262/pdfft?md5=93501f3c8763608fd5623e01d0f66fe2&pid=1-s2.0-S2666831924000262-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924000262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
多糖的成分分析在分析化学的许多应用中至关重要,通常需要水解作为初始步骤,以打断糖苷键并释放单个单糖单元。我们开发了一种微波辅助酸水解多糖的新方法,并将其用于测定欧洲赤松木质纤维素基质中的多糖成分。在优化的条件下,特别是采用 2 M TFA、40 分钟和 120 °C,可获得较高的解聚率,且降解程度极低。微波辅助酸水解和全因子设计的协同作用不仅有助于确定最佳水解条件,还能评估影响多糖水解过程的参数及其关系。这种方法既能实现最高的水解效率,又能最大限度地减少分析物的降解,还能通过使用微波能减少对环境的影响。这一策略有效降低了所需的反应温度、时间和试剂量。
Monosaccharide composition of lignocellulosic matrix—Optimization of microwave-assisted acid hydrolysis condition
Compositional analysis of polysaccharides is crucial in many applications of analytical chemistry, and typically involves hydrolysis as initial step, to break glycosidic bonds and release individual monosaccharide units. We developed a new method for the microwave-assisted acid hydrolysis of polysaccharides, here applied for determining the composition of the polysaccharide fraction within the lignocellulosic matrix of Pinus sylvestris. The optimisation of reaction conditions was carried out using a GC–MS method after a double-step sugar derivatization process.
Under the optimized conditions, specifically, employing 2 M TFA, 40 min, and 120 °C, a high depolymerisation yield was achieved with minimal degradation. Furthermore, the amount of polysaccharides detected in pine wood aligns with the results in existing literature, substantiating the determined chemical composition.
The synergy of microwave-assisted acid hydrolysis and full factorial design not only facilitated the determination of the optimal hydrolysis conditions but also enabled the assessment of the parameters influencing the polysaccharide hydrolysis process and their relationships. This approach made it feasible to achieve maximum hydrolysis efficiency while minimizing analyte degradation, employing a method that reduces environmental impact through the use of microwave energy. This strategy effectively reduced the required reaction temperature, time, and reagent quantities.