将 MGHyp 分布与非线性收缩相结合,建立金融资产收益模型

IF 2.1 2区 经济学 Q2 BUSINESS, FINANCE Journal of Empirical Finance Pub Date : 2024-03-15 DOI:10.1016/j.jempfin.2024.101489
Simon Hediger , Jeffrey Näf
{"title":"将 MGHyp 分布与非线性收缩相结合,建立金融资产收益模型","authors":"Simon Hediger ,&nbsp;Jeffrey Näf","doi":"10.1016/j.jempfin.2024.101489","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"77 ","pages":"Article 101489"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927539824000240/pdfft?md5=84b1b3630884c1e067c4a40a2255ecc7&pid=1-s2.0-S0927539824000240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns\",\"authors\":\"Simon Hediger ,&nbsp;Jeffrey Näf\",\"doi\":\"10.1016/j.jempfin.2024.101489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"77 \",\"pages\":\"Article 101489\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000240/pdfft?md5=84b1b3630884c1e067c4a40a2255ecc7&pid=1-s2.0-S0927539824000240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000240\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539824000240","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文将非线性收缩与多元广义双曲(MGHyp)分布相结合,从而将灵活的参数模型扩展到高维度。本文开发了一种快速、稳定且适用于高维度的期望最大化(EM)算法。本文提供了所提算法单调性的理论依据,并通过仿真表明,该算法能够准确检索参数估计。最后,在广泛的马科维茨投资组合优化分析中,该方法与最先进的基准模型进行了比较。所提出的模型在样本外投资组合方面表现出色,同时具有相当低的周转率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns

The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
3.80%
发文量
59
期刊介绍: The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.
期刊最新文献
High-frequency realized stochastic volatility model Jump tail risk exposure and the cross-section of stock returns Time-varying variance decomposition of macro-finance term structure models Technological shocks and stock market volatility over a century Is firm-level political risk priced in the corporate bond market?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1