{"title":"将 MGHyp 分布与非线性收缩相结合,建立金融资产收益模型","authors":"Simon Hediger , Jeffrey Näf","doi":"10.1016/j.jempfin.2024.101489","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"77 ","pages":"Article 101489"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927539824000240/pdfft?md5=84b1b3630884c1e067c4a40a2255ecc7&pid=1-s2.0-S0927539824000240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns\",\"authors\":\"Simon Hediger , Jeffrey Näf\",\"doi\":\"10.1016/j.jempfin.2024.101489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"77 \",\"pages\":\"Article 101489\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000240/pdfft?md5=84b1b3630884c1e067c4a40a2255ecc7&pid=1-s2.0-S0927539824000240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000240\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539824000240","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Combining the MGHyp distribution with nonlinear shrinkage in modeling financial asset returns
The present paper combines nonlinear shrinkage with the multivariate generalized hyperbolic (MGHyp) distribution, thereby extending a flexible parametric model to high dimensions. An expectation–maximization (EM) algorithm is developed that is fast, stable, and applicable in high dimensions. Theoretical arguments for the monotonicity of the proposed algorithm are provided and it is shown in simulations that it is able to accurately retrieve parameter estimates. Finally, in an extensive Markowitz portfolio optimization analysis, the approach is compared to state-of-the-art benchmark models. The proposed model excels with a strong out-of-sample portfolio performance combined with a comparably low turnover.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.