{"title":"通过 EV 交换进行细胞间化学交流:评估接收细胞的电动汽车融合过程参数","authors":"Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo","doi":"10.1109/TMBMC.2023.3336322","DOIUrl":null,"url":null,"abstract":"Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"21-31"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10330635","citationCount":"0","resultStr":"{\"title\":\"Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell\",\"authors\":\"Alfio Lombardo;Giacomo Morabito;Carla Panarello;Fabrizio Pappalardo\",\"doi\":\"10.1109/TMBMC.2023.3336322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"10 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10330635\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10330635/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10330635/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
细胞之间利用各种化学信号进行交流。其中,细胞外囊泡(EVs)引起了科学界的极大兴趣。事实上,得益于生物纳米技术的进步以及对 EVs 进行工程化的可能性,EVs 被认为是在接收细胞间传播生物信息的完美手段。然而,破译调控 EV 货物递送的分子机制是当今利用 EV 信号支持创新和高效治疗方案、替代当前药物递送技术的一个必要但极具挑战性的步骤。特别是,目前有关 EV 融合过程的信息非常少,而 EV 融合是指 EV 膜溶解到靶细胞的质膜上,EV 内容释放到细胞质中的 EV 内化过程。为了了解这一过程的动态,本文介绍了融合过程演变的分析模型。此外,由于对驱动融合过程的生物参数的测量远未实现,我们在本文中将该模型作为一种工具,从现有技术可测量的参数中推断出这些参数的可能值。
Intercellular Chemical Communication Through EV Exchange: Evaluation of the EV Fusion Process Parameters at the Receiving Cell
Cells communicate with each other exploiting a variety of chemical signals. Among them, Extracellular Vesicles (EVs) have attracted large interest by the scientific community. In fact, thanks to the advances in bio-nano-technology and the possibility of engineering EVs, they are envisioned as a perfect means for distributing biological information among receiving cells. However, deciphering the molecular mechanisms that regulate the delivery of EV cargo is, today, a necessary, yet challenging, step toward the exploitation of EV signaling to support innovative and efficient therapeutic protocols, alternative to current drug delivery technologies. In particular, very little information is currently available on the processes of EV fusion, which is the EV internalization process occurring when the EV membrane dissolves into the plasma membrane of the target cell, and the EV content is released into the cytosol. In order to understand the dynamics of this process, this paper introduces an analytical model of the evolution of the fusion process. Moreover, since the measurement of the biological parameters driving the fusion process is far to be achieved, in this paper we use the model as a tool to infer likely values of such parameters from parameters that are measurable with current technology.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.