Laura Galluccio;Alfio Lombardo;Giacomo Morabito;Fabrizio Pappalardo;Salvatore Quattropani
{"title":"微流控通信中的液滴移速键控建模","authors":"Laura Galluccio;Alfio Lombardo;Giacomo Morabito;Fabrizio Pappalardo;Salvatore Quattropani","doi":"10.1109/TMBMC.2024.3369391","DOIUrl":null,"url":null,"abstract":"Droplet microfluidics is a research area rapidly evolving due to its vast range of potential applications in several fields ranging from medicine to biodefense, and drug administration. In this context, it is crucial to identify efficient and effective methods for communicating by means of droplets. Various techniques have been proposed in the past to encode data by exploiting droplets, such as utilizing droplet size, droplet composition, or the presence/absence of droplets. Nevertheless, these methods are plagued by propagation delays within the channel, resulting in the impossibility to rapidly deliver information at the receiver. To address this issue, this paper introduces a novel methodology for encoding information. The proposed approach involves the instantaneous manipulation of a train of dye drops within a continuous oil phase to induce variations in flow properties. By capitalizing on the stable and laminar flow of the drops, our objective is to encode data instantaneously by altering the dye-oil pressure pairs. To better predict and explain the microfluidic dynamics in the channel, we develop a model of the proposed scheme.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Droplet Speed Shift Keying in Microfluidic Communications\",\"authors\":\"Laura Galluccio;Alfio Lombardo;Giacomo Morabito;Fabrizio Pappalardo;Salvatore Quattropani\",\"doi\":\"10.1109/TMBMC.2024.3369391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Droplet microfluidics is a research area rapidly evolving due to its vast range of potential applications in several fields ranging from medicine to biodefense, and drug administration. In this context, it is crucial to identify efficient and effective methods for communicating by means of droplets. Various techniques have been proposed in the past to encode data by exploiting droplets, such as utilizing droplet size, droplet composition, or the presence/absence of droplets. Nevertheless, these methods are plagued by propagation delays within the channel, resulting in the impossibility to rapidly deliver information at the receiver. To address this issue, this paper introduces a novel methodology for encoding information. The proposed approach involves the instantaneous manipulation of a train of dye drops within a continuous oil phase to induce variations in flow properties. By capitalizing on the stable and laminar flow of the drops, our objective is to encode data instantaneously by altering the dye-oil pressure pairs. To better predict and explain the microfluidic dynamics in the channel, we develop a model of the proposed scheme.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10444095/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10444095/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling of Droplet Speed Shift Keying in Microfluidic Communications
Droplet microfluidics is a research area rapidly evolving due to its vast range of potential applications in several fields ranging from medicine to biodefense, and drug administration. In this context, it is crucial to identify efficient and effective methods for communicating by means of droplets. Various techniques have been proposed in the past to encode data by exploiting droplets, such as utilizing droplet size, droplet composition, or the presence/absence of droplets. Nevertheless, these methods are plagued by propagation delays within the channel, resulting in the impossibility to rapidly deliver information at the receiver. To address this issue, this paper introduces a novel methodology for encoding information. The proposed approach involves the instantaneous manipulation of a train of dye drops within a continuous oil phase to induce variations in flow properties. By capitalizing on the stable and laminar flow of the drops, our objective is to encode data instantaneously by altering the dye-oil pressure pairs. To better predict and explain the microfluidic dynamics in the channel, we develop a model of the proposed scheme.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.