用于林火探测的有效图嵌入式 YOLOv5 模型

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-03-18 DOI:10.1111/coin.12640
Hui Yuan, Zhumao Lu, Ruizhe Zhang, Jinsong Li, Shuai Wang, Jingjing Fan
{"title":"用于林火探测的有效图嵌入式 YOLOv5 模型","authors":"Hui Yuan,&nbsp;Zhumao Lu,&nbsp;Ruizhe Zhang,&nbsp;Jinsong Li,&nbsp;Shuai Wang,&nbsp;Jingjing Fan","doi":"10.1111/coin.12640","DOIUrl":null,"url":null,"abstract":"<p>The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective graph embedded YOLOv5 model for forest fire detection\",\"authors\":\"Hui Yuan,&nbsp;Zhumao Lu,&nbsp;Ruizhe Zhang,&nbsp;Jinsong Li,&nbsp;Shuai Wang,&nbsp;Jingjing Fan\",\"doi\":\"10.1111/coin.12640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12640\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12640","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于 YOLOv5 的框架在目标检测领域取得了巨大成功。然而,在林火检测任务中,由于高质量的林火图像较少,YOLO 模型在检测小规模林火方面的性能严重下降。充分利用上下文信息可以有效提高小目标检测的性能。为此,本文提出了一种新的图嵌入式 YOLOv5 森林火灾检测框架,可以利用不同尺度的上下文信息提高小规模森林火灾的检测性能。为了挖掘局部上下文信息,我们设计了一种基于消息传递神经网络(MPNN)机制的空间图卷积操作。为了利用全局上下文信息,我们在每个 YOLO 头之前引入了多头自我关注(MSA)模块。在 FLAME 和我们自建的火灾数据集上的实验结果表明,我们提出的模型提高了小规模森林火灾检测的准确性。所提出的模型充分利用了 YOLOv5 框架的优势,实现了高性能的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An effective graph embedded YOLOv5 model for forest fire detection

The existing YOLOv5-based framework has achieved great success in the field of target detection. However, in forest fire detection tasks, there are few high-quality forest fire images available, and the performance of the YOLO model has suffered a serious decline in detecting small-scale forest fires. Making full use of context information can effectively improve the performance of small target detection. To this end, this paper proposes a new graph-embedded YOLOv5 forest fire detection framework, which can improve the performance of small-scale forest fire detection using different scales of context information. To mine local context information, we design a spatial graph convolution operation based on the message passing neural network (MPNN) mechanism. To utilize global context information, we introduce a multi-head self-attention (MSA) module before each YOLO head. The experimental results on FLAME and our self-built fire dataset show that our proposed model improves the accuracy of small-scale forest fire detection. The proposed model achieves high performance in real-time performance by fully utilizing the advantages of the YOLOv5 framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1