Guanshu Zhao , Jing Ding , Jiayi Ren , Qingliang Zhao , Chengliang Mao , Kun Wang , Jessica Ye , Xueqi Chen , Xianjie Wang , Mingce Long
{"title":"了解过渡金属单原子电子结构在氧化硫自由基介导的氧化降解中的作用","authors":"Guanshu Zhao , Jing Ding , Jiayi Ren , Qingliang Zhao , Chengliang Mao , Kun Wang , Jessica Ye , Xueqi Chen , Xianjie Wang , Mingce Long","doi":"10.1016/j.ese.2024.100405","DOIUrl":null,"url":null,"abstract":"<div><p>The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C<sub>3</sub>N<sub>4</sub> substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400019X/pdfft?md5=0d174a355bead18f5014b2adb0aa6a77&pid=1-s2.0-S266649842400019X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the role of transition metal single-atom electronic structure in oxysulfur radical-mediated oxidative degradation\",\"authors\":\"Guanshu Zhao , Jing Ding , Jiayi Ren , Qingliang Zhao , Chengliang Mao , Kun Wang , Jessica Ye , Xueqi Chen , Xianjie Wang , Mingce Long\",\"doi\":\"10.1016/j.ese.2024.100405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C<sub>3</sub>N<sub>4</sub> substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266649842400019X/pdfft?md5=0d174a355bead18f5014b2adb0aa6a77&pid=1-s2.0-S266649842400019X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266649842400019X\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649842400019X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Understanding the role of transition metal single-atom electronic structure in oxysulfur radical-mediated oxidative degradation
The ubiquity of refractory organic matter in aquatic environments necessitates innovative removal strategies. Sulfate radical-based advanced oxidation has emerged as an attractive solution, offering high selectivity, enduring efficacy, and anti-interference ability. Among many technologies, sulfite activation, leveraging its cost-effectiveness and lower toxicity compared to conventional persulfates, stands out. Yet, the activation process often relies on transition metals, suffering from low atom utilization. Here we introduce a series of single-atom catalysts (SACs) employing transition metals on g-C3N4 substrates, effectively activating sulfite for acetaminophen degradation. We highlight the superior performance of Fe/CN, which demonstrates a degradation rate constant significantly surpassing those of Ni/CN and Cu/CN. Our investigation into the electronic and spin polarization characteristics of these catalysts reveals their critical role in catalytic efficiency, with oxysulfur radical-mediated reactions predominating. Notably, under visible light, the catalytic activity is enhanced, attributed to an increased generation of oxysulfur radicals and a strengthened electron donation-back donation dynamic. The proximity of Fe/CN's d-band center to the Fermi level, alongside its high spin polarization, is shown to improve sulfite adsorption and reduce the HOMO-LUMO gap, thereby accelerating photo-assisted sulfite activation. This work advances the understanding of SACs in environmental applications and lays the groundwork for future water treatment technologies.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.