Poojan Shrestha, Misa Graff, Yu Gu, Yujie Wang, Christy Avery, Jeannie Ginnis, Miguel Simancas Pallares, Andrew Zandona, Hyunseong Ahn, Kevin Nguyen, Danyu Lin, John Preisser, Gary Slade, Mary Marazita, Kari North, Kimon Divaris
{"title":"儿童早期龋齿多基因组关联研究","authors":"Poojan Shrestha, Misa Graff, Yu Gu, Yujie Wang, Christy Avery, Jeannie Ginnis, Miguel Simancas Pallares, Andrew Zandona, Hyunseong Ahn, Kevin Nguyen, Danyu Lin, John Preisser, Gary Slade, Mary Marazita, Kari North, Kimon Divaris","doi":"10.1101/2024.03.12.24303742","DOIUrl":null,"url":null,"abstract":"Early childhood caries (ECC) is the most common non-communicable childhood disease. It is an important health problem with known environmental and social/behavioral influences that lacks evidence for specific associated genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multi-ancestry population of U.S. preschool-age children (n=6,103) participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used ICDAS criteria to measure ECC with the primary trait using the dmfs index with decay classified as macroscopic enamel loss (ICDAS ≥3). We estimated heritability, concordance rates, and conducted genome-wide association analyses to estimate overall genetic effects; the effects stratified by sex, household water fluoride, and dietary sugar; and leveraged the combined gene/gene-environment effects using the 2-degree-of-freedom (2df) joint test. The common genetic variants explained 24% of the phenotypic variance (heritability) of the primary ECC trait and the concordance rate was higher with a higher degree of relatedness. We identified 21 novel non-overlapping genome-wide significant loci for ECC. Two loci, namely RP11-856F16.2 (rs74606067) and SLC41A3 (rs71327750) showed evidence of association with dental caries in external cohorts, namely the GLIDE consortium adult cohort (n=~487,000) and the GLIDE pediatric cohort (n=19,000), respectively. The gene-based tests identified TAAR6 as a genome-wide significant gene. Implicated genes have relevant biological functions including roles in tooth development and taste. These novel associations expand the genomics knowledge base for this common childhood disease and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations of oral health.","PeriodicalId":501363,"journal":{"name":"medRxiv - Dentistry and Oral Medicine","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-ancestry Genome-Wide Association Study of Early Childhood Caries\",\"authors\":\"Poojan Shrestha, Misa Graff, Yu Gu, Yujie Wang, Christy Avery, Jeannie Ginnis, Miguel Simancas Pallares, Andrew Zandona, Hyunseong Ahn, Kevin Nguyen, Danyu Lin, John Preisser, Gary Slade, Mary Marazita, Kari North, Kimon Divaris\",\"doi\":\"10.1101/2024.03.12.24303742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early childhood caries (ECC) is the most common non-communicable childhood disease. It is an important health problem with known environmental and social/behavioral influences that lacks evidence for specific associated genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multi-ancestry population of U.S. preschool-age children (n=6,103) participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used ICDAS criteria to measure ECC with the primary trait using the dmfs index with decay classified as macroscopic enamel loss (ICDAS ≥3). We estimated heritability, concordance rates, and conducted genome-wide association analyses to estimate overall genetic effects; the effects stratified by sex, household water fluoride, and dietary sugar; and leveraged the combined gene/gene-environment effects using the 2-degree-of-freedom (2df) joint test. The common genetic variants explained 24% of the phenotypic variance (heritability) of the primary ECC trait and the concordance rate was higher with a higher degree of relatedness. We identified 21 novel non-overlapping genome-wide significant loci for ECC. Two loci, namely RP11-856F16.2 (rs74606067) and SLC41A3 (rs71327750) showed evidence of association with dental caries in external cohorts, namely the GLIDE consortium adult cohort (n=~487,000) and the GLIDE pediatric cohort (n=19,000), respectively. The gene-based tests identified TAAR6 as a genome-wide significant gene. Implicated genes have relevant biological functions including roles in tooth development and taste. These novel associations expand the genomics knowledge base for this common childhood disease and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations of oral health.\",\"PeriodicalId\":501363,\"journal\":{\"name\":\"medRxiv - Dentistry and Oral Medicine\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Dentistry and Oral Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.03.12.24303742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Dentistry and Oral Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.03.12.24303742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-ancestry Genome-Wide Association Study of Early Childhood Caries
Early childhood caries (ECC) is the most common non-communicable childhood disease. It is an important health problem with known environmental and social/behavioral influences that lacks evidence for specific associated genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multi-ancestry population of U.S. preschool-age children (n=6,103) participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used ICDAS criteria to measure ECC with the primary trait using the dmfs index with decay classified as macroscopic enamel loss (ICDAS ≥3). We estimated heritability, concordance rates, and conducted genome-wide association analyses to estimate overall genetic effects; the effects stratified by sex, household water fluoride, and dietary sugar; and leveraged the combined gene/gene-environment effects using the 2-degree-of-freedom (2df) joint test. The common genetic variants explained 24% of the phenotypic variance (heritability) of the primary ECC trait and the concordance rate was higher with a higher degree of relatedness. We identified 21 novel non-overlapping genome-wide significant loci for ECC. Two loci, namely RP11-856F16.2 (rs74606067) and SLC41A3 (rs71327750) showed evidence of association with dental caries in external cohorts, namely the GLIDE consortium adult cohort (n=~487,000) and the GLIDE pediatric cohort (n=19,000), respectively. The gene-based tests identified TAAR6 as a genome-wide significant gene. Implicated genes have relevant biological functions including roles in tooth development and taste. These novel associations expand the genomics knowledge base for this common childhood disease and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations of oral health.