基于多尺度微分代数神经网络的动力系统学习方法

IF 3.4 Q1 ENGINEERING, MECHANICAL 国际机械系统动力学学报(英文) Pub Date : 2024-03-20 DOI:10.1002/msd2.12102
Yin Huang, Jieyu Ding
{"title":"基于多尺度微分代数神经网络的动力系统学习方法","authors":"Yin Huang,&nbsp;Jieyu Ding","doi":"10.1002/msd2.12102","DOIUrl":null,"url":null,"abstract":"<p>The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data. However, such systems can sometimes exhibit rigidity due to significant variations in component parameters or the presence of slow and fast variables, leading to challenges in learning. To overcome this limitation, we propose a multiscale differential-algebraic neural network (MDANN) method that utilizes Lagrangian mechanics and incorporates multiscale information for dynamical system learning. The MDANN method consists of two main components: the Lagrangian mechanics module and the multiscale module. The Lagrangian mechanics module embeds the system in Cartesian coordinates, adopts a differential-algebraic equation format, and uses Lagrange multipliers to impose constraints explicitly, simplifying the learning problem. The multiscale module converts high-frequency components into low-frequency components using radial scaling to learn subprocesses with large differences in velocity. Experimental results demonstrate that the proposed MDANN method effectively improves the learning of dynamical systems under rigid conditions.</p>","PeriodicalId":60486,"journal":{"name":"国际机械系统动力学学报(英文)","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12102","citationCount":"0","resultStr":"{\"title\":\"A multiscale differential-algebraic neural network-based method for learning dynamical systems\",\"authors\":\"Yin Huang,&nbsp;Jieyu Ding\",\"doi\":\"10.1002/msd2.12102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data. However, such systems can sometimes exhibit rigidity due to significant variations in component parameters or the presence of slow and fast variables, leading to challenges in learning. To overcome this limitation, we propose a multiscale differential-algebraic neural network (MDANN) method that utilizes Lagrangian mechanics and incorporates multiscale information for dynamical system learning. The MDANN method consists of two main components: the Lagrangian mechanics module and the multiscale module. The Lagrangian mechanics module embeds the system in Cartesian coordinates, adopts a differential-algebraic equation format, and uses Lagrange multipliers to impose constraints explicitly, simplifying the learning problem. The multiscale module converts high-frequency components into low-frequency components using radial scaling to learn subprocesses with large differences in velocity. Experimental results demonstrate that the proposed MDANN method effectively improves the learning of dynamical systems under rigid conditions.</p>\",\"PeriodicalId\":60486,\"journal\":{\"name\":\"国际机械系统动力学学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/msd2.12102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"国际机械系统动力学学报(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"国际机械系统动力学学报(英文)","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/msd2.12102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

动态系统学习任务的目标是利用观测数据预测系统的未来行为。然而,由于组件参数的显著变化或慢速和快速变量的存在,此类系统有时会表现出刚性,从而给学习带来挑战。为了克服这一局限性,我们提出了一种多尺度微分代数神经网络(MDANN)方法,该方法利用拉格朗日力学并结合多尺度信息进行动态系统学习。MDANN 方法由两个主要部分组成:拉格朗日力学模块和多尺度模块。拉格朗日力学模块将系统嵌入笛卡尔坐标,采用微分代数方程格式,并使用拉格朗日乘法器明确施加约束,从而简化了学习问题。多尺度模块利用径向缩放将高频成分转换为低频成分,以学习速度差异较大的子过程。实验结果表明,所提出的 MDANN 方法能有效改善刚性条件下的动力系统学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multiscale differential-algebraic neural network-based method for learning dynamical systems

The objective of dynamical system learning tasks is to forecast the future behavior of a system by leveraging observed data. However, such systems can sometimes exhibit rigidity due to significant variations in component parameters or the presence of slow and fast variables, leading to challenges in learning. To overcome this limitation, we propose a multiscale differential-algebraic neural network (MDANN) method that utilizes Lagrangian mechanics and incorporates multiscale information for dynamical system learning. The MDANN method consists of two main components: the Lagrangian mechanics module and the multiscale module. The Lagrangian mechanics module embeds the system in Cartesian coordinates, adopts a differential-algebraic equation format, and uses Lagrange multipliers to impose constraints explicitly, simplifying the learning problem. The multiscale module converts high-frequency components into low-frequency components using radial scaling to learn subprocesses with large differences in velocity. Experimental results demonstrate that the proposed MDANN method effectively improves the learning of dynamical systems under rigid conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 4, Number 3, September 2024 Design of bionic water jet thruster with double-chamber driven by electromagnetic force A data-assisted physics-informed neural network (DA-PINN) for fretting fatigue lifetime prediction Comparison of the performance and dynamics of the asymmetric single-sided and symmetric double-sided vibro-impact nonlinear energy sinks with optimized designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1