Luca Montanelli, Vineeth Venugopal, Elsa A. Olivetti, Marat I. Latypov
{"title":"利用自然语言处理和大型语言模型从文献中高通量提取阶段属性关系","authors":"Luca Montanelli, Vineeth Venugopal, Elsa A. Olivetti, Marat I. Latypov","doi":"10.1007/s40192-024-00344-8","DOIUrl":null,"url":null,"abstract":"<p>Consolidating published research on aluminum alloys into insights about microstructure–property relationships can simplify and reduce the costs involved in alloy design. One critical design consideration for many heat-treatable alloys deriving superior properties from precipitation are phases as key microstructure constituents because they can have a decisive impact on the engineering properties of alloys. Here, we present a computational framework for high-throughput extraction of phases and their impact on properties from scientific papers. Our framework includes transformer-based and large language models to identify sentences with phase-property information in papers, recognize phase and property entities, and extract phase-property relationships and their “sentiment.” We demonstrate the application of our framework on aluminum alloys, for which we build a database of 7,675 phase–property relationships extracted from a corpus of almost 5000 full-text papers. We comment on the extracted relationships based on common metallurgical knowledge.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":"70 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Extraction of Phase–Property Relationships from Literature Using Natural Language Processing and Large Language Models\",\"authors\":\"Luca Montanelli, Vineeth Venugopal, Elsa A. Olivetti, Marat I. Latypov\",\"doi\":\"10.1007/s40192-024-00344-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consolidating published research on aluminum alloys into insights about microstructure–property relationships can simplify and reduce the costs involved in alloy design. One critical design consideration for many heat-treatable alloys deriving superior properties from precipitation are phases as key microstructure constituents because they can have a decisive impact on the engineering properties of alloys. Here, we present a computational framework for high-throughput extraction of phases and their impact on properties from scientific papers. Our framework includes transformer-based and large language models to identify sentences with phase-property information in papers, recognize phase and property entities, and extract phase-property relationships and their “sentiment.” We demonstrate the application of our framework on aluminum alloys, for which we build a database of 7,675 phase–property relationships extracted from a corpus of almost 5000 full-text papers. We comment on the extracted relationships based on common metallurgical knowledge.</p>\",\"PeriodicalId\":13604,\"journal\":{\"name\":\"Integrating Materials and Manufacturing Innovation\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrating Materials and Manufacturing Innovation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40192-024-00344-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-024-00344-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
High-Throughput Extraction of Phase–Property Relationships from Literature Using Natural Language Processing and Large Language Models
Consolidating published research on aluminum alloys into insights about microstructure–property relationships can simplify and reduce the costs involved in alloy design. One critical design consideration for many heat-treatable alloys deriving superior properties from precipitation are phases as key microstructure constituents because they can have a decisive impact on the engineering properties of alloys. Here, we present a computational framework for high-throughput extraction of phases and their impact on properties from scientific papers. Our framework includes transformer-based and large language models to identify sentences with phase-property information in papers, recognize phase and property entities, and extract phase-property relationships and their “sentiment.” We demonstrate the application of our framework on aluminum alloys, for which we build a database of 7,675 phase–property relationships extracted from a corpus of almost 5000 full-text papers. We comment on the extracted relationships based on common metallurgical knowledge.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.