{"title":"垂直固-水-气流条件下气力提升泵输送厘米级煤粒的性能特点","authors":"Parviz Enany, Carsten Drebenshtedt","doi":"10.1007/s40789-024-00668-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m<sup>3</sup> and graining 25–44.5 mm. The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity, submergence ratio, and feeding coal possibility was not the same, which are stand in range of 20%, 75%, and 40%, respectively. Hence, creating the optimal airlift pump performance is highly dependent on submergence ratio. More importantly, we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices, such as fast speed camera and conductivity ring sensor. The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%. To validate present experimental data, the existing empirical correlations together with the theoretical equations related to the multiphase flow was used. The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process. This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity. It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance characteristics of the airlift pump under vertical solid–water–gas flow conditions for conveying centimetric-sized coal particles\",\"authors\":\"Parviz Enany, Carsten Drebenshtedt\",\"doi\":\"10.1007/s40789-024-00668-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m<sup>3</sup> and graining 25–44.5 mm. The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity, submergence ratio, and feeding coal possibility was not the same, which are stand in range of 20%, 75%, and 40%, respectively. Hence, creating the optimal airlift pump performance is highly dependent on submergence ratio. More importantly, we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices, such as fast speed camera and conductivity ring sensor. The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%. To validate present experimental data, the existing empirical correlations together with the theoretical equations related to the multiphase flow was used. The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process. This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity. It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.</p>\",\"PeriodicalId\":53469,\"journal\":{\"name\":\"International Journal of Coal Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Coal Science & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40789-024-00668-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40789-024-00668-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance characteristics of the airlift pump under vertical solid–water–gas flow conditions for conveying centimetric-sized coal particles
In this study, the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25–44.5 mm. The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity, submergence ratio, and feeding coal possibility was not the same, which are stand in range of 20%, 75%, and 40%, respectively. Hence, creating the optimal airlift pump performance is highly dependent on submergence ratio. More importantly, we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices, such as fast speed camera and conductivity ring sensor. The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%. To validate present experimental data, the existing empirical correlations together with the theoretical equations related to the multiphase flow was used. The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process. This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity. It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.
期刊介绍:
The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field.
The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects.
The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.