{"title":"紫外线辐射准周期性及其与宇宙射线和太阳行星际数据的可能联系","authors":"A. Maghrabi","doi":"10.1155/2024/1165223","DOIUrl":null,"url":null,"abstract":"In this study, solar ultraviolet (UV) radiation data collected in Riyadh, Saudi Arabia, between 2015 and 2022 were analyzed to explore quasi-periodicities in the UV time series. The power spectrum density analysis revealed several local peaks that exceeded the 95% confidence interval. These peaks included periodicities of 483–490 days, 272 days, 157−162 days, 103−110 days, 64–72 days, 27 days, and 13 days. To investigate the potential influence of space weather parameters on UV radiation, data on cosmic rays, solar radio flux at 10.7 cm (F10.7 cm), the Kp index, and solar wind speed for the same time period were examined. The aim was to identify periodicities in these variables that aligned with those found in the UV radiation data. The analysis reveals that several periodicities observed in the UV radiation spectrum are also present in the spectra of the considered parameters. Prominent periodicities include a 270-day cycle in UV radiation and cosmic rays, as well as periodicities of 72 days, 27 days, and 13 days in all considered variables. Furthermore, 110-day peaks are observed in spectrum of the UV radiation, the Kp index, solar radio flux F10.7, and solar wind speed. Notably, consistent peaks at 157-day periodicity are identified in the UV spectrum, also present in the spectra of all the considered variables (cosmic rays ∼162 days, Kp index ∼162 days, solar radio flux ∼156 days, and solar wind speed ∼163 days). The identification of common periodicities between UV radiation and space weather parameters in this study provides compelling evidence of a potential direct or indirect influence of solar variations on UV radiation. This finding significantly enhances our understanding of the impact of extraterrestrial factors, particularly solar activity, on the Earth’s environment.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"111 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data\",\"authors\":\"A. Maghrabi\",\"doi\":\"10.1155/2024/1165223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, solar ultraviolet (UV) radiation data collected in Riyadh, Saudi Arabia, between 2015 and 2022 were analyzed to explore quasi-periodicities in the UV time series. The power spectrum density analysis revealed several local peaks that exceeded the 95% confidence interval. These peaks included periodicities of 483–490 days, 272 days, 157−162 days, 103−110 days, 64–72 days, 27 days, and 13 days. To investigate the potential influence of space weather parameters on UV radiation, data on cosmic rays, solar radio flux at 10.7 cm (F10.7 cm), the Kp index, and solar wind speed for the same time period were examined. The aim was to identify periodicities in these variables that aligned with those found in the UV radiation data. The analysis reveals that several periodicities observed in the UV radiation spectrum are also present in the spectra of the considered parameters. Prominent periodicities include a 270-day cycle in UV radiation and cosmic rays, as well as periodicities of 72 days, 27 days, and 13 days in all considered variables. Furthermore, 110-day peaks are observed in spectrum of the UV radiation, the Kp index, solar radio flux F10.7, and solar wind speed. Notably, consistent peaks at 157-day periodicity are identified in the UV spectrum, also present in the spectra of all the considered variables (cosmic rays ∼162 days, Kp index ∼162 days, solar radio flux ∼156 days, and solar wind speed ∼163 days). The identification of common periodicities between UV radiation and space weather parameters in this study provides compelling evidence of a potential direct or indirect influence of solar variations on UV radiation. This finding significantly enhances our understanding of the impact of extraterrestrial factors, particularly solar activity, on the Earth’s environment.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1165223\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2024/1165223","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Ultraviolet Radiation Quasi-Periodicities and Their Possible Link with the Cosmic Ray and Solar Interplanetary Data
In this study, solar ultraviolet (UV) radiation data collected in Riyadh, Saudi Arabia, between 2015 and 2022 were analyzed to explore quasi-periodicities in the UV time series. The power spectrum density analysis revealed several local peaks that exceeded the 95% confidence interval. These peaks included periodicities of 483–490 days, 272 days, 157−162 days, 103−110 days, 64–72 days, 27 days, and 13 days. To investigate the potential influence of space weather parameters on UV radiation, data on cosmic rays, solar radio flux at 10.7 cm (F10.7 cm), the Kp index, and solar wind speed for the same time period were examined. The aim was to identify periodicities in these variables that aligned with those found in the UV radiation data. The analysis reveals that several periodicities observed in the UV radiation spectrum are also present in the spectra of the considered parameters. Prominent periodicities include a 270-day cycle in UV radiation and cosmic rays, as well as periodicities of 72 days, 27 days, and 13 days in all considered variables. Furthermore, 110-day peaks are observed in spectrum of the UV radiation, the Kp index, solar radio flux F10.7, and solar wind speed. Notably, consistent peaks at 157-day periodicity are identified in the UV spectrum, also present in the spectra of all the considered variables (cosmic rays ∼162 days, Kp index ∼162 days, solar radio flux ∼156 days, and solar wind speed ∼163 days). The identification of common periodicities between UV radiation and space weather parameters in this study provides compelling evidence of a potential direct or indirect influence of solar variations on UV radiation. This finding significantly enhances our understanding of the impact of extraterrestrial factors, particularly solar activity, on the Earth’s environment.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.