Sheng Xu, Bin Sun, Junde Li, Junya Xu, Wei-Kang Chen, Yumei Jiang, Jie Li, Zhe Zhou, Ren Wang
{"title":"通过调节 ROS 稳态,过表达来自茜草的咖啡酸 O-甲基转移酶(LaCOMT)使拟南芥对汞具有耐受性","authors":"Sheng Xu, Bin Sun, Junde Li, Junya Xu, Wei-Kang Chen, Yumei Jiang, Jie Li, Zhe Zhou, Ren Wang","doi":"10.1007/s10725-024-01133-1","DOIUrl":null,"url":null,"abstract":"<p>Caffeic acid <i>O</i>-methyltransferase (COMT) catalyzes key steps in the biosynthesis of lignin. It can also act as an <i>N</i>-acetylserotonin <i>O</i>-methyltransferase (ASMT), which participates in the last step of melatonin biosynthesis. Melatonin has been demonstrated to play vital roles in the regulation of plant processes and stress responses. However, the ASMT activity of COMT has not yet been characterized in the non-model plant golden spider lily (<i>Lycoris aurea</i> [L’Hér.] Herb), which is an ornamental that is medicinally important. A previous transcriptome analysis identified the <i>COMT</i> gene (<i>LaCOMT</i>) in this plant. The recombinant LaCOMT protein from <i>E. coli</i> was highly active toward ASMT, and this activity was significantly inhibited by caffeic acid in a dose-dependent manner. LaCOMT-GFP was localized to the cytoplasm and nucleus. Considering that the bulbs of <i>L. aurea</i> can tolerate extreme environmental conditions, such as drought stress, waterlogging and poor soil conditions, the pattern of expression of <i>LaCOMT</i> in different tissues and after exposure to mercuric chloride (HgCl<sub>2</sub>) was analyzed. The results revealed that <i>LaCOMT</i> is ubiquitously expressed in all the tissues studied and can be induced by HgCl<sub>2</sub>. Moreover, the heterologous overexpression of <i>LaCOMT</i> led to mercury tolerance in transgenic <i>Arabidopsis thaliana</i> plants. This could be attributed to the accumulation of scavenged reactive oxygen species (ROS) by elevating antioxidant enzymes and augmenting antioxidants in the transgenic <i>A. thaliana</i> plants that overexpressed <i>LaCOMT</i>. Our results suggest that LaCOMT participates in the alleviation of Hg toxicity by modulating ROS homeostasis in plants.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"34 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of caffeic acid O-methyltransferase from Lycoris aurea (LaCOMT) confers tolerance to mercury in Arabidopsis thaliana by modulating ROS homeostasis\",\"authors\":\"Sheng Xu, Bin Sun, Junde Li, Junya Xu, Wei-Kang Chen, Yumei Jiang, Jie Li, Zhe Zhou, Ren Wang\",\"doi\":\"10.1007/s10725-024-01133-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Caffeic acid <i>O</i>-methyltransferase (COMT) catalyzes key steps in the biosynthesis of lignin. It can also act as an <i>N</i>-acetylserotonin <i>O</i>-methyltransferase (ASMT), which participates in the last step of melatonin biosynthesis. Melatonin has been demonstrated to play vital roles in the regulation of plant processes and stress responses. However, the ASMT activity of COMT has not yet been characterized in the non-model plant golden spider lily (<i>Lycoris aurea</i> [L’Hér.] Herb), which is an ornamental that is medicinally important. A previous transcriptome analysis identified the <i>COMT</i> gene (<i>LaCOMT</i>) in this plant. The recombinant LaCOMT protein from <i>E. coli</i> was highly active toward ASMT, and this activity was significantly inhibited by caffeic acid in a dose-dependent manner. LaCOMT-GFP was localized to the cytoplasm and nucleus. Considering that the bulbs of <i>L. aurea</i> can tolerate extreme environmental conditions, such as drought stress, waterlogging and poor soil conditions, the pattern of expression of <i>LaCOMT</i> in different tissues and after exposure to mercuric chloride (HgCl<sub>2</sub>) was analyzed. The results revealed that <i>LaCOMT</i> is ubiquitously expressed in all the tissues studied and can be induced by HgCl<sub>2</sub>. Moreover, the heterologous overexpression of <i>LaCOMT</i> led to mercury tolerance in transgenic <i>Arabidopsis thaliana</i> plants. This could be attributed to the accumulation of scavenged reactive oxygen species (ROS) by elevating antioxidant enzymes and augmenting antioxidants in the transgenic <i>A. thaliana</i> plants that overexpressed <i>LaCOMT</i>. Our results suggest that LaCOMT participates in the alleviation of Hg toxicity by modulating ROS homeostasis in plants.</p>\",\"PeriodicalId\":20412,\"journal\":{\"name\":\"Plant Growth Regulation\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Growth Regulation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10725-024-01133-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-024-01133-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of caffeic acid O-methyltransferase from Lycoris aurea (LaCOMT) confers tolerance to mercury in Arabidopsis thaliana by modulating ROS homeostasis
Caffeic acid O-methyltransferase (COMT) catalyzes key steps in the biosynthesis of lignin. It can also act as an N-acetylserotonin O-methyltransferase (ASMT), which participates in the last step of melatonin biosynthesis. Melatonin has been demonstrated to play vital roles in the regulation of plant processes and stress responses. However, the ASMT activity of COMT has not yet been characterized in the non-model plant golden spider lily (Lycoris aurea [L’Hér.] Herb), which is an ornamental that is medicinally important. A previous transcriptome analysis identified the COMT gene (LaCOMT) in this plant. The recombinant LaCOMT protein from E. coli was highly active toward ASMT, and this activity was significantly inhibited by caffeic acid in a dose-dependent manner. LaCOMT-GFP was localized to the cytoplasm and nucleus. Considering that the bulbs of L. aurea can tolerate extreme environmental conditions, such as drought stress, waterlogging and poor soil conditions, the pattern of expression of LaCOMT in different tissues and after exposure to mercuric chloride (HgCl2) was analyzed. The results revealed that LaCOMT is ubiquitously expressed in all the tissues studied and can be induced by HgCl2. Moreover, the heterologous overexpression of LaCOMT led to mercury tolerance in transgenic Arabidopsis thaliana plants. This could be attributed to the accumulation of scavenged reactive oxygen species (ROS) by elevating antioxidant enzymes and augmenting antioxidants in the transgenic A. thaliana plants that overexpressed LaCOMT. Our results suggest that LaCOMT participates in the alleviation of Hg toxicity by modulating ROS homeostasis in plants.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.