意大利每月运输周转量指标的间接估算

IF 1.9 4区 经济学 Q2 ECONOMICS Empirical Economics Pub Date : 2024-03-19 DOI:10.1007/s00181-024-02571-6
Barbara Guardabascio, Filippo Moauro, Luke Mosley
{"title":"意大利每月运输周转量指标的间接估算","authors":"Barbara Guardabascio, Filippo Moauro, Luke Mosley","doi":"10.1007/s00181-024-02571-6","DOIUrl":null,"url":null,"abstract":"<p>The paper discusses the results of a selection of a set of monthly indicators to be used as predictors of the quarterly index of Italian service turnover. A mixed frequency approach based on sparse temporal disaggregation is used, which outperforms the classical methods of the Chow and Lin family, allowing both a high number of regressors by the LASSO method and stable estimates. The application refers to the turnover in transport, a sector strongly affected in 2020 by the dramatic movements due to the COVID-19 pandemic and the resurgence of inflation at the end of 2021. The monthly indicators are selected from 143 time series: 56 series of business surveys in transport about both the climate and frequency of the answers; 18 series from Assaeroporti about both passengers and cargo flights split by national and international routes; 69 series of monthly turnover in industry split by both sector of economic activity and reference market. The sample spans the months from January 2010 to December 2021 for both seasonally adjusted and unadjusted data. Several aspects of the estimation are considered: the stability of selected indicators over the quarters 2017–2021; their forecasting performance; the reliability of the estimates in terms of their monthly pattern.</p>","PeriodicalId":11642,"journal":{"name":"Empirical Economics","volume":"147 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indirect estimation of the monthly transport turnover indicator in Italy\",\"authors\":\"Barbara Guardabascio, Filippo Moauro, Luke Mosley\",\"doi\":\"10.1007/s00181-024-02571-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper discusses the results of a selection of a set of monthly indicators to be used as predictors of the quarterly index of Italian service turnover. A mixed frequency approach based on sparse temporal disaggregation is used, which outperforms the classical methods of the Chow and Lin family, allowing both a high number of regressors by the LASSO method and stable estimates. The application refers to the turnover in transport, a sector strongly affected in 2020 by the dramatic movements due to the COVID-19 pandemic and the resurgence of inflation at the end of 2021. The monthly indicators are selected from 143 time series: 56 series of business surveys in transport about both the climate and frequency of the answers; 18 series from Assaeroporti about both passengers and cargo flights split by national and international routes; 69 series of monthly turnover in industry split by both sector of economic activity and reference market. The sample spans the months from January 2010 to December 2021 for both seasonally adjusted and unadjusted data. Several aspects of the estimation are considered: the stability of selected indicators over the quarters 2017–2021; their forecasting performance; the reliability of the estimates in terms of their monthly pattern.</p>\",\"PeriodicalId\":11642,\"journal\":{\"name\":\"Empirical Economics\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Empirical Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00181-024-02571-6\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00181-024-02571-6","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了选择一组月度指标作为意大利服务业营业额季度指数预测指标的结果。本文采用了一种基于稀疏时间分解的混频方法,该方法优于周氏和林氏家族的经典方法,既能通过 LASSO 方法获得大量回归因子,又能获得稳定的估计值。该应用指的是 2020 年受 COVID-19 大流行病和 2021 年底通胀回升的剧烈波动影响较大的运输部门的营业额。月度指标选自 143 个时间序列:其中包括 56 个运输业商业调查系列,涉及气候和回答频率;18 个来自 Assaeroporti 的客运和货运航班系列,按国内和国际航线划分;69 个工业月营业额系列,按经济活动部门和参考市场划分。样本涵盖 2010 年 1 月至 2021 年 12 月的季节性调整和未调整数据。我们考虑了估算的几个方面:选定指标在 2017-2021 年各季度的稳定性;其预测性能;从月度模式来看估算的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indirect estimation of the monthly transport turnover indicator in Italy

The paper discusses the results of a selection of a set of monthly indicators to be used as predictors of the quarterly index of Italian service turnover. A mixed frequency approach based on sparse temporal disaggregation is used, which outperforms the classical methods of the Chow and Lin family, allowing both a high number of regressors by the LASSO method and stable estimates. The application refers to the turnover in transport, a sector strongly affected in 2020 by the dramatic movements due to the COVID-19 pandemic and the resurgence of inflation at the end of 2021. The monthly indicators are selected from 143 time series: 56 series of business surveys in transport about both the climate and frequency of the answers; 18 series from Assaeroporti about both passengers and cargo flights split by national and international routes; 69 series of monthly turnover in industry split by both sector of economic activity and reference market. The sample spans the months from January 2010 to December 2021 for both seasonally adjusted and unadjusted data. Several aspects of the estimation are considered: the stability of selected indicators over the quarters 2017–2021; their forecasting performance; the reliability of the estimates in terms of their monthly pattern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
157
期刊介绍: Empirical Economics publishes high quality papers using econometric or statistical methods to fill the gap between economic theory and observed data. Papers explore such topics as estimation of established relationships between economic variables, testing of hypotheses derived from economic theory, treatment effect estimation, policy evaluation, simulation, forecasting, as well as econometric methods and measurement. Empirical Economics emphasizes the replicability of empirical results. Replication studies of important results in the literature - both positive and negative results - may be published as short papers in Empirical Economics. Authors of all accepted papers and replications are required to submit all data and codes prior to publication (for more details, see: Instructions for Authors).The journal follows a single blind review procedure. In order to ensure the high quality of the journal and an efficient editorial process, a substantial number of submissions that have very poor chances of receiving positive reviews are routinely rejected without sending the papers for review.Officially cited as: Empir Econ
期刊最新文献
Macroeconomic effects of monetary policy in Japan: an analysis using interest rate futures surprises Stochastic instability: a dynamic quantile approach Revisiting precious metal mining stocks and precious metals as hedge, diversifiers and safe-havens: a multidimensional scaling and wavelet quantile correlation perspective Euro area inflation differentials: the role of fiscal policies revisited Instrumental variable estimation with observed and unobserved heterogeneity of the treatment and instrument effect: a latent class approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1