接触变质页岩中角质的分子结构特征:洞察石墨化对有机物孔隙的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-01 DOI:10.1306/11152322157
Yuguang Hou, Rui Yu, Junjie Li, Zhenhong Chen, Cheng Wang, Xianglin Chen, Rui Yang, Sheng He
{"title":"接触变质页岩中角质的分子结构特征:洞察石墨化对有机物孔隙的影响","authors":"Yuguang Hou, Rui Yu, Junjie Li, Zhenhong Chen, Cheng Wang, Xianglin Chen, Rui Yang, Sheng He","doi":"10.1306/11152322157","DOIUrl":null,"url":null,"abstract":"The adjustment of organic matter (OM) molecular structure due to graphitization should be of great significance to the evolution and preservation of OM pores at an extremely high maturity stage. In this study, the lower Paleozoic Silurian Longmaxi contact metamorphic shales from the north section of the Xuefeng Mountain tectonic zone of the South China block were taken as an example and the molecular structure of kerogen in these postmature Longmaxi shales was analyzed using laser Raman microprobe, transmission electron microscopy, and Fourier transform infrared spectroscopy techniques. The OM pore structures of shale samples with different thermal maturity were compared using CO2/N2 adsorption and field emission scanning electron microscopy analysis. The results indicate that postmature kerogens have entered the transition stage from amorphous carbon to crystallized graphite. The orderliness and crystallinity of carbon atom layers in these postmature samples continuously increase with maturity, accompanied by decreased disordered graphite lattice. The minimum d (Å) value of carbon layers is close to 0.335 nm, indicating that the kerogens have partially reached the ideal graphite state. Around or between clay platelets, OM develops numerous bubble pores that have diameters of 50 to 200 nm, displaying high plane porosity and multilayer superposition. This OM type has morphological characteristics resembling artificial porous graphite. The OM porosity contributes significantly to the total porosity, and decreases with progressing graphitization. The thermodynamic stability of OM allows homogenization of pores after graphitization, as heterogeneity decreases and orderliness increases. However, graphitization could reduce the compressive capacity of pores, which is not conducive to OM pore preservation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"10 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular structure characterization of kerogen in contact metamorphic shales: Insights into the effect of graphitization on organic matter pores\",\"authors\":\"Yuguang Hou, Rui Yu, Junjie Li, Zhenhong Chen, Cheng Wang, Xianglin Chen, Rui Yang, Sheng He\",\"doi\":\"10.1306/11152322157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adjustment of organic matter (OM) molecular structure due to graphitization should be of great significance to the evolution and preservation of OM pores at an extremely high maturity stage. In this study, the lower Paleozoic Silurian Longmaxi contact metamorphic shales from the north section of the Xuefeng Mountain tectonic zone of the South China block were taken as an example and the molecular structure of kerogen in these postmature Longmaxi shales was analyzed using laser Raman microprobe, transmission electron microscopy, and Fourier transform infrared spectroscopy techniques. The OM pore structures of shale samples with different thermal maturity were compared using CO2/N2 adsorption and field emission scanning electron microscopy analysis. The results indicate that postmature kerogens have entered the transition stage from amorphous carbon to crystallized graphite. The orderliness and crystallinity of carbon atom layers in these postmature samples continuously increase with maturity, accompanied by decreased disordered graphite lattice. The minimum d (Å) value of carbon layers is close to 0.335 nm, indicating that the kerogens have partially reached the ideal graphite state. Around or between clay platelets, OM develops numerous bubble pores that have diameters of 50 to 200 nm, displaying high plane porosity and multilayer superposition. This OM type has morphological characteristics resembling artificial porous graphite. The OM porosity contributes significantly to the total porosity, and decreases with progressing graphitization. The thermodynamic stability of OM allows homogenization of pores after graphitization, as heterogeneity decreases and orderliness increases. However, graphitization could reduce the compressive capacity of pores, which is not conducive to OM pore preservation.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1306/11152322157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1306/11152322157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

石墨化引起的有机质(OM)分子结构的调整,对OM孔隙在极高成熟阶段的演化和保存具有重要意义。本研究以华南地块雪峰山构造带北段下古生界志留系龙马溪接触变质页岩为例,采用激光拉曼微探针、透射电镜和傅立叶变换红外光谱技术分析了这些后成熟龙马溪页岩中的角质分子结构。利用 CO2/N2 吸附和场发射扫描电子显微镜分析比较了不同热成熟度页岩样品的 OM 孔隙结构。结果表明,后成熟角砾岩已进入从无定形碳到结晶石墨的过渡阶段。这些成熟后样品中碳原子层的有序度和结晶度随着成熟度的提高而不断提高,同时石墨晶格的无序度也在降低。碳原子层的最小 d (Å) 值接近 0.335 nm,表明角砾岩已部分达到理想的石墨状态。在粘土小板周围或之间,OM 形成了许多直径为 50 至 200 nm 的气泡孔,显示出高平面孔隙率和多层叠加。这种 OM 具有类似人造多孔石墨的形态特征。OM 孔隙率在总孔隙率中占很大比例,并随着石墨化的进展而降低。OM 的热力学稳定性使其在石墨化后孔隙趋于均匀,异质性降低,有序性提高。然而,石墨化会降低孔隙的抗压能力,不利于 OM 孔隙的保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular structure characterization of kerogen in contact metamorphic shales: Insights into the effect of graphitization on organic matter pores
The adjustment of organic matter (OM) molecular structure due to graphitization should be of great significance to the evolution and preservation of OM pores at an extremely high maturity stage. In this study, the lower Paleozoic Silurian Longmaxi contact metamorphic shales from the north section of the Xuefeng Mountain tectonic zone of the South China block were taken as an example and the molecular structure of kerogen in these postmature Longmaxi shales was analyzed using laser Raman microprobe, transmission electron microscopy, and Fourier transform infrared spectroscopy techniques. The OM pore structures of shale samples with different thermal maturity were compared using CO2/N2 adsorption and field emission scanning electron microscopy analysis. The results indicate that postmature kerogens have entered the transition stage from amorphous carbon to crystallized graphite. The orderliness and crystallinity of carbon atom layers in these postmature samples continuously increase with maturity, accompanied by decreased disordered graphite lattice. The minimum d (Å) value of carbon layers is close to 0.335 nm, indicating that the kerogens have partially reached the ideal graphite state. Around or between clay platelets, OM develops numerous bubble pores that have diameters of 50 to 200 nm, displaying high plane porosity and multilayer superposition. This OM type has morphological characteristics resembling artificial porous graphite. The OM porosity contributes significantly to the total porosity, and decreases with progressing graphitization. The thermodynamic stability of OM allows homogenization of pores after graphitization, as heterogeneity decreases and orderliness increases. However, graphitization could reduce the compressive capacity of pores, which is not conducive to OM pore preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1