Xingjia Wei, Shuangshuang Luo, Depeng Meng, Dianjun Lu, Zhihui Li
{"title":"基于 χ 状态的新型量子多方盲签名方案","authors":"Xingjia Wei, Shuangshuang Luo, Depeng Meng, Dianjun Lu, Zhihui Li","doi":"10.1142/s0219749924500114","DOIUrl":null,"url":null,"abstract":"<p>Quantum digital signature, as an extension of classical digital signature, has become an important research content in quantum cryptography. Quantum blind signature combines the advantages of classical blind signature and quantum signature, which can ensure the unconditional security of the scheme based on the realization of the blinded signature of the message, and can be effectively applied in many real-world scenarios. This paper uses the four-particle <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> state as a communication channel, combined with quantum teleportation technology to propose a new quantum multi-party blind signature protocol, which has the following characteristics: First, the Toeplitz hash function based on the linear shift register is introduced to blind the message, and the length of the blinded message can be adjusted according to the actual demand to increase the flexibility of the scheme; Second, through multi-party participation, the blind signature of multi-bit messages can be realized, and the signature efficiency can be improved. Compared with other quantum blind signatures, the signature efficiency has been greatly improved; Finally, using the four-particle <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> state as a quantum channel can make the scheme use fewer resources to transmit data and increases the security of the scheme. Through security analysis, it can be seen that the scheme has blindness, nonrepudiation and unforgeability.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"23 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel quantum multiparty blind signature scheme based on χ state\",\"authors\":\"Xingjia Wei, Shuangshuang Luo, Depeng Meng, Dianjun Lu, Zhihui Li\",\"doi\":\"10.1142/s0219749924500114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum digital signature, as an extension of classical digital signature, has become an important research content in quantum cryptography. Quantum blind signature combines the advantages of classical blind signature and quantum signature, which can ensure the unconditional security of the scheme based on the realization of the blinded signature of the message, and can be effectively applied in many real-world scenarios. This paper uses the four-particle <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>χ</mi></math></span><span></span> state as a communication channel, combined with quantum teleportation technology to propose a new quantum multi-party blind signature protocol, which has the following characteristics: First, the Toeplitz hash function based on the linear shift register is introduced to blind the message, and the length of the blinded message can be adjusted according to the actual demand to increase the flexibility of the scheme; Second, through multi-party participation, the blind signature of multi-bit messages can be realized, and the signature efficiency can be improved. Compared with other quantum blind signatures, the signature efficiency has been greatly improved; Finally, using the four-particle <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>χ</mi></math></span><span></span> state as a quantum channel can make the scheme use fewer resources to transmit data and increases the security of the scheme. Through security analysis, it can be seen that the scheme has blindness, nonrepudiation and unforgeability.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749924500114\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749924500114","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A novel quantum multiparty blind signature scheme based on χ state
Quantum digital signature, as an extension of classical digital signature, has become an important research content in quantum cryptography. Quantum blind signature combines the advantages of classical blind signature and quantum signature, which can ensure the unconditional security of the scheme based on the realization of the blinded signature of the message, and can be effectively applied in many real-world scenarios. This paper uses the four-particle state as a communication channel, combined with quantum teleportation technology to propose a new quantum multi-party blind signature protocol, which has the following characteristics: First, the Toeplitz hash function based on the linear shift register is introduced to blind the message, and the length of the blinded message can be adjusted according to the actual demand to increase the flexibility of the scheme; Second, through multi-party participation, the blind signature of multi-bit messages can be realized, and the signature efficiency can be improved. Compared with other quantum blind signatures, the signature efficiency has been greatly improved; Finally, using the four-particle state as a quantum channel can make the scheme use fewer resources to transmit data and increases the security of the scheme. Through security analysis, it can be seen that the scheme has blindness, nonrepudiation and unforgeability.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.